Articles | Volume 9, issue 10
Atmos. Meas. Tech., 9, 5007–5035, 2016
https://doi.org/10.5194/amt-9-5007-2016

Special issue: EARLINET, the European Aerosol Research Lidar Network

Atmos. Meas. Tech., 9, 5007–5035, 2016
https://doi.org/10.5194/amt-9-5007-2016

Research article 12 Oct 2016

Research article | 12 Oct 2016

Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET

Detlef Müller et al.

Related authors

Measurement report: Balloon-borne in-situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-977,https://doi.org/10.5194/acp-2020-977, 2020
Revised manuscript accepted for ACP
The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019,https://doi.org/10.5194/acp-19-15183-2019, 2019
3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
Matthias Tesche, Alexei Kolgotin, Moritz Haarig, Sharon P. Burton, Richard A. Ferrare, Chris A. Hostetler, and Detlef Müller
Atmos. Meas. Tech., 12, 4421–4437, https://doi.org/10.5194/amt-12-4421-2019,https://doi.org/10.5194/amt-12-4421-2019, 2019
Short summary
Aerosol-type classification based on AERONET version 3 inversion products
Sung-Kyun Shin, Matthias Tesche, Youngmin Noh, and Detlef Müller
Atmos. Meas. Tech., 12, 3789–3803, https://doi.org/10.5194/amt-12-3789-2019,https://doi.org/10.5194/amt-12-3789-2019, 2019
Short summary
Technical note: Absorption aerosol optical depth components from AERONET observations of mixed dust plumes
Sung-Kyun Shin, Matthias Tesche, Detlef Müller, and Youngmin Noh
Atmos. Meas. Tech., 12, 607–618, https://doi.org/10.5194/amt-12-607-2019,https://doi.org/10.5194/amt-12-607-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of stratospheric aerosol size distribution parameters using satellite solar occultation measurements at three wavelengths
Felix Wrana, Christian von Savigny, Jacob Zalach, and Larry W. Thomason
Atmos. Meas. Tech., 14, 2345–2357, https://doi.org/10.5194/amt-14-2345-2021,https://doi.org/10.5194/amt-14-2345-2021, 2021
Short summary
Relative sky radiance from multi-exposure all-sky camera images
Juan C. Antuña-Sánchez, Roberto Román, Victoria E. Cachorro, Carlos Toledano, César López, Ramiro González, David Mateos, Abel Calle, and Ángel M. de Frutos
Atmos. Meas. Tech., 14, 2201–2217, https://doi.org/10.5194/amt-14-2201-2021,https://doi.org/10.5194/amt-14-2201-2021, 2021
Short summary
An uncertainty-based protocol for the setup and measurement of soot–black carbon emissions from gas flares using sky-LOSA
Bradley M. Conrad and Matthew R. Johnson
Atmos. Meas. Tech., 14, 1573–1591, https://doi.org/10.5194/amt-14-1573-2021,https://doi.org/10.5194/amt-14-1573-2021, 2021
Short summary
A new measurement approach for validating satellite-based above-cloud aerosol optical depth
Charles K. Gatebe, Hiren Jethva, Ritesh Gautam, Rajesh Poudyal, and Tamás Várnai
Atmos. Meas. Tech., 14, 1405–1423, https://doi.org/10.5194/amt-14-1405-2021,https://doi.org/10.5194/amt-14-1405-2021, 2021
Short summary
OMPS LP Version 2.0 multi-wavelength aerosol extinction coefficient retrieval algorithm
Ghassan Taha, Robert Loughman, Tong Zhu, Larry Thomason, Jayanta Kar, Landon Rieger, and Adam Bourassa
Atmos. Meas. Tech., 14, 1015–1036, https://doi.org/10.5194/amt-14-1015-2021,https://doi.org/10.5194/amt-14-1015-2021, 2021
Short summary

Cited articles

Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J. L., Navas Guzmán, F., , Pérez-Ramírez, D., and Olmo, F. J.: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star- and sun-photometry, Geophys. Res. Letts., 38, L01807, https://doi.org/10.1029/2010GL045999, 2011.
Althausen, D., Müller, D., Ansmann, A., Wandinger, U., Hube, H., Clauder, E., and Zörner, S.: Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Ocean. Tech., 17, 1469–1482, 2000.
Amato, U., Carfora, M. F., Cuomo, V., and Serio, C.: Objective algorithms for the aerosol problem, Appl. Opt., 34, 5442–5452, 1995.
Ansmann, A. and Müller, D.: Lidar and atmospheric aerosol particles, in: Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere, edited by: Weitkamp, C., 105–141, Springer, New York, 2005.
Böckmann, C.: Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data to determine aerosol size distributions, Appl. Optics, 40, 1329–1342, 2001.
Download
Short summary
We present a comparison study of two data inversion algorithms that are used to derive microphysical properties of atmospheric particle pollution. The algorithms have been developed for the analysis of data collected with advanced light detection and ranging (lidar) instruments from the European EARLINET network. The result of this study shows that two key parameters needed for climate change studies, i.e. particle size and light absorption capacity, can be derived with reasonable accuracy.