Articles | Volume 9, issue 10
https://doi.org/10.5194/amt-9-5007-2016
https://doi.org/10.5194/amt-9-5007-2016
Research article
 | 
12 Oct 2016
Research article |  | 12 Oct 2016

Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET

Detlef Müller, Christine Böckmann, Alexei Kolgotin, Lars Schneidenbach, Eduard Chemyakin, Julia Rosemann, Pavel Znak, and Anton Romanov

Related authors

Vertical structure of biomass burning aerosol transported over the southeast Atlantic Ocean
Harshvardhan Harshvardhan, Richard Ferrare, Sharon Burton, Johnathan Hair, Chris Hostetler, David Harper, Anthony Cook, Marta Fenn, Amy Jo Scarino, Eduard Chemyakin, and Detlef Müller
Atmos. Chem. Phys., 22, 9859–9876, https://doi.org/10.5194/acp-22-9859-2022,https://doi.org/10.5194/acp-22-9859-2022, 2022
Short summary
Long-term variation study of fine-mode particle size and regional characteristics using AERONET data
Juseon Shin, Juhyeon Sim, Naghmeh Dehkhoda, Sohee Joo, Taekyung Kim, Gahyung Kim, Detlef Müller, Matthias Tesche, Sungkyun Shin, Dongho Shin, and Youngmin Noh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-219,https://doi.org/10.5194/acp-2022-219, 2022
Preprint withdrawn
Short summary
Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021,https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019,https://doi.org/10.5194/acp-19-15183-2019, 2019
3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?
Matthias Tesche, Alexei Kolgotin, Moritz Haarig, Sharon P. Burton, Richard A. Ferrare, Chris A. Hostetler, and Detlef Müller
Atmos. Meas. Tech., 12, 4421–4437, https://doi.org/10.5194/amt-12-4421-2019,https://doi.org/10.5194/amt-12-4421-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024,https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024,https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024,https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024,https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024,https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary

Cited articles

Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J. L., Navas Guzmán, F., , Pérez-Ramírez, D., and Olmo, F. J.: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star- and sun-photometry, Geophys. Res. Letts., 38, L01807, https://doi.org/10.1029/2010GL045999, 2011.
Althausen, D., Müller, D., Ansmann, A., Wandinger, U., Hube, H., Clauder, E., and Zörner, S.: Scanning 6-wavelength 11-channel aerosol lidar, J. Atmos. Ocean. Tech., 17, 1469–1482, 2000.
Amato, U., Carfora, M. F., Cuomo, V., and Serio, C.: Objective algorithms for the aerosol problem, Appl. Opt., 34, 5442–5452, 1995.
Ansmann, A. and Müller, D.: Lidar and atmospheric aerosol particles, in: Lidar. Range-Resolved Optical Remote Sensing of the Atmosphere, edited by: Weitkamp, C., 105–141, Springer, New York, 2005.
Böckmann, C.: Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data to determine aerosol size distributions, Appl. Optics, 40, 1329–1342, 2001.
Download
Short summary
We present a comparison study of two data inversion algorithms that are used to derive microphysical properties of atmospheric particle pollution. The algorithms have been developed for the analysis of data collected with advanced light detection and ranging (lidar) instruments from the European EARLINET network. The result of this study shows that two key parameters needed for climate change studies, i.e. particle size and light absorption capacity, can be derived with reasonable accuracy.