Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5499-2016
https://doi.org/10.5194/amt-9-5499-2016
Research article
 | 
18 Nov 2016
Research article |  | 18 Nov 2016

Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals

Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli

Related authors

Evaluation of total column water vapour products from satellite observations and reanalyses within the GEWEX Water Vapor Assessment
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024,https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021,https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Lee wave detection over the Mediterranean Sea using the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) total column water vapour (TCWV) dataset
Enzo Papandrea, Stefano Casadio, Elisa Castelli, Bianca Maria Dinelli, and Mario Marcello Miglietta
Atmos. Meas. Tech., 12, 6683–6693, https://doi.org/10.5194/amt-12-6683-2019,https://doi.org/10.5194/amt-12-6683-2019, 2019
Short summary
The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) version 2: algorithm evolution, dataset description and performance improvements
Elisa Castelli, Enzo Papandrea, Alessio Di Roma, Bianca Maria Dinelli, Stefano Casadio, and Bojan Bojkov
Atmos. Meas. Tech., 12, 371–388, https://doi.org/10.5194/amt-12-371-2019,https://doi.org/10.5194/amt-12-371-2019, 2019
Short summary
The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018,https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024,https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Víctor Molina García, Diego Loyola, Hanlim Lee, and Jhoon Kim
Atmos. Meas. Tech., 17, 6163–6191, https://doi.org/10.5194/amt-17-6163-2024,https://doi.org/10.5194/amt-17-6163-2024, 2024
Short summary
Troposphere–stratosphere-integrated bromine monoxide (BrO) profile retrieval over the central Pacific Ocean
Theodore K. Koenig, François Hendrick, Douglas Kinnison, Christopher F. Lee, Michel Van Roozendael, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5911–5934, https://doi.org/10.5194/amt-17-5911-2024,https://doi.org/10.5194/amt-17-5911-2024, 2024
Short summary
Local and regional enhancements of CH4, CO, and CO2 inferred from TCCON column measurements
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024,https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Merging TEMPEST microwave and GOES-16 geostationary IR soundings for improved water vapor profiles
Chia-Pang Kuo and Christian Kummerow
Atmos. Meas. Tech., 17, 5637–5653, https://doi.org/10.5194/amt-17-5637-2024,https://doi.org/10.5194/amt-17-5637-2024, 2024
Short summary

Cited articles

Carlotti, M.: Global-fit approach to the analysis of limb-scanning atmospheric measurements, Appl. Opt., 27, 3250–3254, https://doi.org/10.1364/AO.27.003250, 1988.
Carlotti, M., Brizzi, G., Papandrea, E., Prevedelli, M., Ridolfi, M., Dinelli, B. M., and Magnani, L.: GMTR: Two-dimensional geofit multitarget retrieval model for Michelson Interferometer for Passive Atmospheric Sounding/Environmental Satellite observations, Appl. Opt., 45, 716–727, 2006.
Carlotti, M., Arnone, E., Castelli, E., Dinelli, B. M., and Papandrea, E.: Position error in profiles retrieved from MIPAS observations with a 1-D algorithm, Atmos. Meas. Tech., 6, 419–429, https://doi.org/10.5194/amt-6-419-2013, 2013.
Dudhia, A., Jay, V. L., and Rodgers, C. D.: MIPAS Orbital Retrieval using Sequential Estimation, Earth Observation Data Group, Department of Physics, University of Oxford, available at: http://www.atm.ox.ac.uk/MORSE/ (last access: 14 November 2016), 2005.
Download
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.