Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5499-2016
https://doi.org/10.5194/amt-9-5499-2016
Research article
 | 
18 Nov 2016
Research article |  | 18 Nov 2016

Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals

Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli

Related authors

Urban pollution monitoring with the AOTF-based NO2 camera: validation with other DOAS instruments
Pierre Gramme, Cedric Busschots, Emmanuel Dekemper, Didier Pieroux, Noel C. Baker, Stefano Casadio, Anna Maria lannarelli, Nicola Ferrante, Annalisa Di Bernardino, Paolo Pettinari, Elisa Castelli, Luca di Liberto, and Francesco Cairo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2255,https://doi.org/10.5194/egusphere-2025-2255, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Evaluation of total column water vapour products from satellite observations and reanalyses within the GEWEX Water Vapor Assessment
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024,https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021,https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Lee wave detection over the Mediterranean Sea using the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) total column water vapour (TCWV) dataset
Enzo Papandrea, Stefano Casadio, Elisa Castelli, Bianca Maria Dinelli, and Mario Marcello Miglietta
Atmos. Meas. Tech., 12, 6683–6693, https://doi.org/10.5194/amt-12-6683-2019,https://doi.org/10.5194/amt-12-6683-2019, 2019
Short summary
The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) version 2: algorithm evolution, dataset description and performance improvements
Elisa Castelli, Enzo Papandrea, Alessio Di Roma, Bianca Maria Dinelli, Stefano Casadio, and Bojan Bojkov
Atmos. Meas. Tech., 12, 371–388, https://doi.org/10.5194/amt-12-371-2019,https://doi.org/10.5194/amt-12-371-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Assimilation of volcanic sulfur dioxide products from IASI and TROPOMI into the chemical transport model MOCAGE: case study of the 2021 La Soufrière Saint Vincent eruption with the March 2022 version of MOCAGE
Mickaël Bacles, Jonathan Améric, and Vincent Guidard
Atmos. Meas. Tech., 18, 2659–2680, https://doi.org/10.5194/amt-18-2659-2025,https://doi.org/10.5194/amt-18-2659-2025, 2025
Short summary
In-flight estimation of instrument spectral response functions using sparse representations
Jihanne El Haouari, Jean-Michel Gaucel, Christelle Pittet, Jean-Yves Tourneret, and Herwig Wendt
Atmos. Meas. Tech., 18, 2573–2590, https://doi.org/10.5194/amt-18-2573-2025,https://doi.org/10.5194/amt-18-2573-2025, 2025
Short summary
Robustness of atmospheric trace gas retrievals obtained from low-spectral-resolution Fourier transform infrared absorption spectra under variations of interferogram length
Bavo Langerock, Martine De Mazière, Filip Desmet, Pauli Heikkinen, Rigel Kivi, Mahesh Kumar Sha, Corinne Vigouroux, Minqiang Zhou, Gopala Krishna Darbha, and Mohmmed Talib
Atmos. Meas. Tech., 18, 2439–2446, https://doi.org/10.5194/amt-18-2439-2025,https://doi.org/10.5194/amt-18-2439-2025, 2025
Short summary
Retrieval of NO2 profiles from 3 years of Pandora MAX-DOAS measurements in Toronto, Canada
Ramina Alwarda, Kristof Bognar, Xiaoyi Zhao, Vitali Fioletov, Jonathan Davies, Sum Chi Lee, Debora Griffin, Alexandru Lupu, Udo Frieß, Alexander Cede, Yushan Su, and Kimberly Strong
Atmos. Meas. Tech., 18, 2397–2423, https://doi.org/10.5194/amt-18-2397-2025,https://doi.org/10.5194/amt-18-2397-2025, 2025
Short summary
A channel selection methodology for enhancing volcanic SO2 monitoring using FY-3E/HIRAS-II hyperspectral data
Xinyu Li, Lin Zhu, Hongfu Sun, Jun Li, Ximing Lv, Chengli Qi, and Huanhuan Yan
Atmos. Meas. Tech., 18, 2333–2352, https://doi.org/10.5194/amt-18-2333-2025,https://doi.org/10.5194/amt-18-2333-2025, 2025
Short summary

Cited articles

Carlotti, M.: Global-fit approach to the analysis of limb-scanning atmospheric measurements, Appl. Opt., 27, 3250–3254, https://doi.org/10.1364/AO.27.003250, 1988.
Carlotti, M., Brizzi, G., Papandrea, E., Prevedelli, M., Ridolfi, M., Dinelli, B. M., and Magnani, L.: GMTR: Two-dimensional geofit multitarget retrieval model for Michelson Interferometer for Passive Atmospheric Sounding/Environmental Satellite observations, Appl. Opt., 45, 716–727, 2006.
Carlotti, M., Arnone, E., Castelli, E., Dinelli, B. M., and Papandrea, E.: Position error in profiles retrieved from MIPAS observations with a 1-D algorithm, Atmos. Meas. Tech., 6, 419–429, https://doi.org/10.5194/amt-6-419-2013, 2013.
Dudhia, A., Jay, V. L., and Rodgers, C. D.: MIPAS Orbital Retrieval using Sequential Estimation, Earth Observation Data Group, Department of Physics, University of Oxford, available at: http://www.atm.ox.ac.uk/MORSE/ (last access: 14 November 2016), 2005.
Download
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Share