Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5499-2016
https://doi.org/10.5194/amt-9-5499-2016
Research article
 | 
18 Nov 2016
Research article |  | 18 Nov 2016

Errors induced by different approximations in handling horizontal atmospheric inhomogeneities in MIPAS/ENVISAT retrievals

Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli

Related authors

Urban pollution monitoring with the AOTF-based NO2 camera: validation with other DOAS instruments
Pierre Gramme, Cedric Busschots, Emmanuel Dekemper, Didier Pieroux, Noel Baker, Stefano Casadio, Anna Maria Iannarelli, Nicola Ferrante, Annalisa Di Bernardino, Paolo Pettinari, Elisa Castelli, Luca Di Liberto, and Francesco Cairo
Atmos. Meas. Tech., 18, 6021–6037, https://doi.org/10.5194/amt-18-6021-2025,https://doi.org/10.5194/amt-18-6021-2025, 2025
Short summary
A Spectral Perspective of ENSO Driven OLR Variability
Martina Taddia, Federico Fabiano, Stefano Della Fera, Elisa Castelli, and Bianca Maria Dinelli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3750,https://doi.org/10.5194/egusphere-2025-3750, 2025
Short summary
Evaluation of total column water vapour products from satellite observations and reanalyses within the GEWEX Water Vapor Assessment
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024,https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
The ESA MIPAS/Envisat level2-v8 dataset: 10 years of measurements retrieved with ORM v8.22
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021,https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary

Cited articles

Carlotti, M.: Global-fit approach to the analysis of limb-scanning atmospheric measurements, Appl. Opt., 27, 3250–3254, https://doi.org/10.1364/AO.27.003250, 1988.
Carlotti, M., Brizzi, G., Papandrea, E., Prevedelli, M., Ridolfi, M., Dinelli, B. M., and Magnani, L.: GMTR: Two-dimensional geofit multitarget retrieval model for Michelson Interferometer for Passive Atmospheric Sounding/Environmental Satellite observations, Appl. Opt., 45, 716–727, 2006.
Carlotti, M., Arnone, E., Castelli, E., Dinelli, B. M., and Papandrea, E.: Position error in profiles retrieved from MIPAS observations with a 1-D algorithm, Atmos. Meas. Tech., 6, 419–429, https://doi.org/10.5194/amt-6-419-2013, 2013.
Dudhia, A., Jay, V. L., and Rodgers, C. D.: MIPAS Orbital Retrieval using Sequential Estimation, Earth Observation Data Group, Department of Physics, University of Oxford, available at: http://www.atm.ox.ac.uk/MORSE/ (last access: 14 November 2016), 2005.
Download
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Share