Articles | Volume 10, issue 6
https://doi.org/10.5194/amt-10-2129-2017
https://doi.org/10.5194/amt-10-2129-2017
Research article
 | 
09 Jun 2017
Research article |  | 09 Jun 2017

Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

Yann Blanchard, Alain Royer, Norman T. O'Neill, David D. Turner, and Edwin W. Eloranta

Related authors

Analysis of Lhù’ààn Mân’ (Kluane Lake) dust plumes using passive and active ground-based remote sensing supported by physical surface measurements
Seyed Ali Sayedain, Norman T. O’Neill, James King, Patrick L. Hayes, Daniel Bellamy, Richard Washington, Sebastian Engelstaedter, Andy Vicente-Luis, Jill Bachelder, and Malo Bernhard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-67,https://doi.org/10.5194/amt-2023-67, 2023
Preprint under review for AMT
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
EGUsphere, https://doi.org/10.5194/egusphere-2023-696,https://doi.org/10.5194/egusphere-2023-696, 2023
Short summary
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023,https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Relationship between the sub-micron fraction (SMF) and fine-mode fraction (FMF) in the context of AERONET retrievals
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023,https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Evaluation of a cloudy cold-air pool in the Columbia River basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023,https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Across-track extension of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-3D product
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech., 16, 2319–2331, https://doi.org/10.5194/amt-16-2319-2023,https://doi.org/10.5194/amt-16-2319-2023, 2023
Short summary
Insights into 3D cloud radiative transfer effects for the Orbiting Carbon Observatory
Steven T. Massie, Heather Cronk, Aronne Merrelli, Sebastian Schmidt, and Steffen Mauceri
Atmos. Meas. Tech., 16, 2145–2166, https://doi.org/10.5194/amt-16-2145-2023,https://doi.org/10.5194/amt-16-2145-2023, 2023
Short summary
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023,https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023,https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter-wave radar
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
Atmos. Meas. Tech., 16, 1723–1744, https://doi.org/10.5194/amt-16-1723-2023,https://doi.org/10.5194/amt-16-1723-2023, 2023
Short summary

Cited articles

Allen, J. R.: Measurements of Cloud Emissivity in the 8–13 μ Waveband, J. Appl. Meteor., 10, 260–265, https://doi.org/10.1175/1520-0450(1971)010<0260:MOCEIT>2.0.CO;2, 1971.
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: A way forward, Atmos. Res., 112, 45–69, https://doi.org/10.1016/j.atmosres.2012.04.010, 2012.
Battan, L. J.: Radar observation of the atmosphere, Q. J. Roy. Meteorol. Soc., 99, 793–793, https://doi.org/10.1002/qj.49709942229, 1973.
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Cole, B. H., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μ m, J. Quant. Spectrosc. Ra., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014.
Download
Short summary
Multiband thermal measurements of zenith sky radiance were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. The retrieval technique was validated using a synergy lidar and radar data. Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of thin ice clouds.