Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-249-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-249-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field intercomparison of prevailing sonic anemometers
Karlsruhe Institute of Technology, Institute of Meteorology and
Climate Research, Atmospheric Environmental Research,
Garmisch-Partenkirchen, Germany
Matthias J. Zeeman
Karlsruhe Institute of Technology, Institute of Meteorology and
Climate Research, Atmospheric Environmental Research,
Garmisch-Partenkirchen, Germany
Related authors
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Preprint under review for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024, https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Short summary
We compared wind measurements using different lidar setups at various heights. The triple Doppler lidar, sonic anemometer, and two single Doppler lidars were tested. Overall, the lidar methods showed good agreement with the sonic anemometer. The triple Doppler lidar performed better than single Doppler lidars, especially at higher altitudes. We also developed a new filtering approach for virtual tower scanning strategies. Single Doppler lidars provide reliable wind data over flat terrain.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020, https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Short summary
In this paper, we demonstrate that high physiological activity levels during the extremely warm winter are allocated into the below-ground biomass and only to a minor extent used for additional plant growth during early spring. This process is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, and it may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019, https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Short summary
To study turbulence in heterogeneous terrain, high-resolution LES is desired. However, the desired resolution is often restricted by computational constraints. We present a two-way interactive vertical grid nesting technique that enables high-resolution LES of the surface layer. By employing a finer grid only close to the surface layer, the total computational memory requirement is reduced. We demonstrate the accuracy and performance of the method for a convective boundary layer simulation.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Frederik De Roo and Matthias Mauder
Atmos. Chem. Phys., 18, 5059–5074, https://doi.org/10.5194/acp-18-5059-2018, https://doi.org/10.5194/acp-18-5059-2018, 2018
Short summary
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
V. Maurer, N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner
Atmos. Chem. Phys., 16, 1377–1400, https://doi.org/10.5194/acp-16-1377-2016, https://doi.org/10.5194/acp-16-1377-2016, 2016
Short summary
Short summary
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our understanding of boundary-layer processes. We compared turbulence profiles measured at three locations lying about 3 km apart and found that the deployment of the instruments in different crop fields has no direct influence on turbulence statistics on cloud-free days. Nevertheless, spatial differences as well as correlations were found, indicating the existence of organized structures of turbulence.
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, https://doi.org/10.5194/amt-7-2273-2014, 2014
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
Johannes Speidel, Hannes Vogelmann, Andreas Behrendt, Diego Lange, Matthias Mauder, Jens Reichardt, and Kevin Wolz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-168, https://doi.org/10.5194/amt-2024-168, 2024
Preprint under review for AMT
Short summary
Short summary
Humidity transport from the Earth's surface into the atmosphere is relevant for many processes. However, knowledge on the actual distribution of humidity concentrations is sparse – mainly due to technological limitations. With the herein presented lidar, it is possible to measure humidity concentrations and their vertical fluxes up to altitudes of >3 km with high spatio-temporal resolution, opening new possibilities for detailed process understanding and, ultimately, better model representation.
Kevin Wolz, Christopher Holst, Frank Beyrich, Eileen Päschke, and Matthias Mauder
Geosci. Instrum. Method. Data Syst., 13, 205–223, https://doi.org/10.5194/gi-13-205-2024, https://doi.org/10.5194/gi-13-205-2024, 2024
Short summary
Short summary
We compared wind measurements using different lidar setups at various heights. The triple Doppler lidar, sonic anemometer, and two single Doppler lidars were tested. Overall, the lidar methods showed good agreement with the sonic anemometer. The triple Doppler lidar performed better than single Doppler lidars, especially at higher altitudes. We also developed a new filtering approach for virtual tower scanning strategies. Single Doppler lidars provide reliable wind data over flat terrain.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1469, https://doi.org/10.5194/egusphere-2024-1469, 2024
Short summary
Short summary
Overview of a data system for documenting, processing, managing and publishing data streams from research networks of atmospheric/environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely-available software.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Sreenath Paleri, Luise Wanner, Matthias Sühring, Ankur Desai, and Matthias Mauder
EGUsphere, https://doi.org/10.5194/egusphere-2023-1721, https://doi.org/10.5194/egusphere-2023-1721, 2023
Preprint archived
Short summary
Short summary
We present a description and evaluation of numerical simulations of field experiment days during the CHEESEHEAD19 field campaign, conducted over a heterogeneous forested domain in Northern Wisconsin, USA. Diurnal simulations, informed and constrained by field measurements for two days during the summer and autumn were performed. The model could simulate near surface time series and profiles of atmospheric state variables and fluxes that matched relatively well with observations.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Matthias Mauder, Andreas Ibrom, Luise Wanner, Frederik De Roo, Peter Brugger, Ralf Kiese, and Kim Pilegaard
Atmos. Meas. Tech., 14, 7835–7850, https://doi.org/10.5194/amt-14-7835-2021, https://doi.org/10.5194/amt-14-7835-2021, 2021
Short summary
Short summary
Turbulent flux measurements suffer from a general systematic underestimation. One reason for this bias is non-local transport by large-scale circulations. A recently developed model for this additional transport of sensible and latent energy is evaluated for three different test sites. Different options on how to apply this correction are presented, and the results are evaluated against independent measurements.
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021, https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Benjamin Fersch, Alfonso Senatore, Bianca Adler, Joël Arnault, Matthias Mauder, Katrin Schneider, Ingo Völksch, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2457–2481, https://doi.org/10.5194/hess-24-2457-2020, https://doi.org/10.5194/hess-24-2457-2020, 2020
Martin Kunz, Jost V. Lavric, Rainer Gasche, Christoph Gerbig, Richard H. Grant, Frank-Thomas Koch, Marcus Schumacher, Benjamin Wolf, and Matthias Zeeman
Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020, https://doi.org/10.5194/amt-13-1671-2020, 2020
Short summary
Short summary
The nocturnal boundary layer (NBL) budget method enables the quantification of gas fluxes between ecosystems and the atmosphere under nocturnal stable stratification, a condition under which standard approaches struggle. However, up to now the application of the NBL method has been limited by difficulties in obtaining the required measurements. We show how an unmanned aircraft system (UAS) equipped with a carbon dioxide analyser can make this method more accessible.
Björn Maronga, Sabine Banzhaf, Cornelia Burmeister, Thomas Esch, Renate Forkel, Dominik Fröhlich, Vladimir Fuka, Katrin Frieda Gehrke, Jan Geletič, Sebastian Giersch, Tobias Gronemeier, Günter Groß, Wieke Heldens, Antti Hellsten, Fabian Hoffmann, Atsushi Inagaki, Eckhard Kadasch, Farah Kanani-Sühring, Klaus Ketelsen, Basit Ali Khan, Christoph Knigge, Helge Knoop, Pavel Krč, Mona Kurppa, Halim Maamari, Andreas Matzarakis, Matthias Mauder, Matthias Pallasch, Dirk Pavlik, Jens Pfafferott, Jaroslav Resler, Sascha Rissmann, Emmanuele Russo, Mohamed Salim, Michael Schrempf, Johannes Schwenkel, Gunther Seckmeyer, Sebastian Schubert, Matthias Sühring, Robert von Tils, Lukas Vollmer, Simon Ward, Björn Witha, Hauke Wurps, Julian Zeidler, and Siegfried Raasch
Geosci. Model Dev., 13, 1335–1372, https://doi.org/10.5194/gmd-13-1335-2020, https://doi.org/10.5194/gmd-13-1335-2020, 2020
Short summary
Short summary
In this paper, we describe the PALM model system 6.0. PALM is a Fortran-based turbulence-resolving code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. During the last years, PALM has been significantly improved and now offers a variety of new components that are especially designed to simulate the urban atmosphere at building-resolving resolution.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Genki Katata, Rüdiger Grote, Matthias Mauder, Matthias J. Zeeman, and Masakazu Ota
Biogeosciences, 17, 1071–1085, https://doi.org/10.5194/bg-17-1071-2020, https://doi.org/10.5194/bg-17-1071-2020, 2020
Short summary
Short summary
In this paper, we demonstrate that high physiological activity levels during the extremely warm winter are allocated into the below-ground biomass and only to a minor extent used for additional plant growth during early spring. This process is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, and it may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Erkan Ibraim, Benjamin Wolf, Eliza Harris, Rainer Gasche, Jing Wei, Longfei Yu, Ralf Kiese, Sarah Eggleston, Klaus Butterbach-Bahl, Matthias Zeeman, Béla Tuzson, Lukas Emmenegger, Johan Six, Stephan Henne, and Joachim Mohn
Biogeosciences, 16, 3247–3266, https://doi.org/10.5194/bg-16-3247-2019, https://doi.org/10.5194/bg-16-3247-2019, 2019
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas and the major stratospheric ozone-depleting substance; therefore, mitigation of anthropogenic N2O emissions is needed. To trace N2O-emitting source processes, in this study, we observed N2O isotopocules above an intensively managed grassland research site with a recently developed laser spectroscopy method. Our results indicate that the domain of denitrification or nitrifier denitrification was the major N2O source.
Sadiq Huq, Frederik De Roo, Siegfried Raasch, and Matthias Mauder
Geosci. Model Dev., 12, 2523–2538, https://doi.org/10.5194/gmd-12-2523-2019, https://doi.org/10.5194/gmd-12-2523-2019, 2019
Short summary
Short summary
To study turbulence in heterogeneous terrain, high-resolution LES is desired. However, the desired resolution is often restricted by computational constraints. We present a two-way interactive vertical grid nesting technique that enables high-resolution LES of the surface layer. By employing a finer grid only close to the surface layer, the total computational memory requirement is reduced. We demonstrate the accuracy and performance of the method for a convective boundary layer simulation.
Anne Klosterhalfen, Alexander Graf, Nicolas Brüggemann, Clemens Drüe, Odilia Esser, María P. González-Dugo, Günther Heinemann, Cor M. J. Jacobs, Matthias Mauder, Arnold F. Moene, Patrizia Ney, Thomas Pütz, Corinna Rebmann, Mario Ramos Rodríguez, Todd M. Scanlon, Marius Schmidt, Rainer Steinbrecher, Christoph K. Thomas, Veronika Valler, Matthias J. Zeeman, and Harry Vereecken
Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, https://doi.org/10.5194/bg-16-1111-2019, 2019
Short summary
Short summary
To obtain magnitudes of flux components of H2O and CO2 (e.g., transpiration, soil respiration), we applied source partitioning approaches after Scanlon and Kustas (2010) and after Thomas et al. (2008) to high-frequency eddy covariance measurements of 12 study sites covering various ecosystems (croplands, grasslands, and forests) in different climatic regions. We analyzed the interrelations among turbulence, site characteristics, and the performance of both partitioning methods.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Frederik De Roo and Matthias Mauder
Atmos. Chem. Phys., 18, 5059–5074, https://doi.org/10.5194/acp-18-5059-2018, https://doi.org/10.5194/acp-18-5059-2018, 2018
Short summary
Short summary
We investigate the mismatch between incoming energy and the turbulent flux of sensible heat at the Earth's surface and how surface heterogeneity affects this imbalance. To resolve the turbulent fluxes we employ large-eddy simulations. We study terrain with different heterogeneity lengths and quantify the contributions of advection by the mean flow and horizontal flux-divergence in the surface energy budget. We find that the latter contributions depend on the scale of the heterogeneity length.
Caroline Brosy, Karina Krampf, Matthias Zeeman, Benjamin Wolf, Wolfgang Junkermann, Klaus Schäfer, Stefan Emeis, and Harald Kunstmann
Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, https://doi.org/10.5194/amt-10-2773-2017, 2017
Short summary
Short summary
Vertical and horizontal sounding of the planetary boundary layer can be complemented by unmanned aerial vehicles (UAV). Utilizing a multicopter-type UAV spatial sampling of air and simultaneously sensing of meteorological variables is possible for the study of surface exchange processes. During stable atmospheric conditions, vertical methane gradients of about 300 ppb were found. This approach extended the vertical profile height of existing tower-based infrastructure by a factor of five.
Tirtha Banerjee, Frederik De Roo, and Matthias Mauder
Hydrol. Earth Syst. Sci., 21, 2987–3000, https://doi.org/10.5194/hess-21-2987-2017, https://doi.org/10.5194/hess-21-2987-2017, 2017
Short summary
Short summary
The canopy convector effect in the context of canopy turbulence was recently introduced by Rotenberg and Yakir (Science, 2010). However, there was a lack of understanding of this phenomenon as a generic feature of canopy turbulence, as we have demonstrated in this paper. Uncertainties of existing parameterizations of canopy aerodynamic resistance to heat transfer are discussed and possible remedies are suggested.
V. Maurer, N. Kalthoff, A. Wieser, M. Kohler, M. Mauder, and L. Gantner
Atmos. Chem. Phys., 16, 1377–1400, https://doi.org/10.5194/acp-16-1377-2016, https://doi.org/10.5194/acp-16-1377-2016, 2016
Short summary
Short summary
The measurement of turbulence in the lowest 1–2 km above the land surface is important for our understanding of boundary-layer processes. We compared turbulence profiles measured at three locations lying about 3 km apart and found that the deployment of the instruments in different crop fields has no direct influence on turbulence statistics on cloud-free days. Nevertheless, spatial differences as well as correlations were found, indicating the existence of organized structures of turbulence.
G. Fratini and M. Mauder
Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, https://doi.org/10.5194/amt-7-2273-2014, 2014
P. Michna, W. Eugster, R. V. Hiller, M. J. Zeeman, and H. Wanner
Geogr. Helv., 68, 249–263, https://doi.org/10.5194/gh-68-249-2013, https://doi.org/10.5194/gh-68-249-2013, 2013
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Assessing the ducting phenomenon and its potential impact on Global Navigation Satellite System (GNSS) radio occultation refractivity retrievals over the northeast Pacific Ocean using radiosondes and global reanalysis
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Performance evaluation of MeteoTracker mobile sensor for outdoor applications
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Evaluation of in situ observations on Marine Weather Observer during Typhoon Sinlaku
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
How observations from automatic hail sensors in Switzerland shed light on local hailfall duration and compare with hailpad measurements
A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes
A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan
Validation of the Aeolus Level-2B wind product over Northern Canada and the Arctic
Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations
Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Smartphone pressure data: quality control and impact on atmospheric analysis
Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement
More science with less: evaluation of a 3D-printed weather station
Characteristics and performance of wind profiles as observed by the radar wind profiler network of China
Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere
On the estimation of vertical air velocity and detection of atmospheric turbulence from the ascent rate of balloon soundings
Comparison of turbulence measurements by a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar
Using computational fluid dynamics and field experiments to improve vehicle-based wind measurements for environmental monitoring
Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06° N, 140.13° E), Japan
A method to assess the accuracy of sonic anemometer measurements
Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation
Evaluation of OAFlux datasets based on in situ air–sea flux tower observations over Yongxing Island in 2016
Characteristics of vertical velocities estimated from drop size and fall velocity spectra of a Parsivel disdrometer
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour
Hotplate precipitation gauge calibrations and field measurements
A new method for estimating UV fluxes at ground level in cloud-free conditions
Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements
Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics
Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure
An automated method for the evaluation of the pointing accuracy of Sun-tracking devices
Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network
Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory
Uncertainties of ground-based microwave radiometer retrievals in zenith and off-zenith observations under snow conditions
Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges
Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site
HOAPS and ERA-Interim precipitation over the sea: validation against shipboard in situ measurements
Quality assessment of solar UV irradiance measured with array spectroradiometers
Spatial mapping of ground-based observations of total ozone
Performance of WVSS-II hygrometers on the FAAM research aircraft
Thomas E. Winning Jr., Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech., 17, 6851–6863, https://doi.org/10.5194/amt-17-6851-2024, https://doi.org/10.5194/amt-17-6851-2024, 2024
Short summary
Short summary
The effect of ducting due to the presence of the planetary boundary layer (PBL) is prevalent over the northeastern Pacific Ocean from Los Angeles to Honolulu, USA. The ducting-induced refractivity bias in the radiosonde climatology and ERA5 data is highly correlated with the height of the PBL. The magnitude of bias is linearly dependent on the strength of ducting but not the location, and the overall reanalysis data systematically underestimate the height of the PBL by as much as 120 m.
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024, https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Short summary
Accurate measurements of the properties of snowflakes are challenging to make. We present a new technique for the real-time measurement of the density of freshly fallen individual snowflakes. A new thermal-imaging instrument, the Differential Emissivity Imaging Disdrometer (DEID), is shown to be capable of providing accurate estimates of individual snowflake and bulk snow hydrometeor density. The method exploits the rate of heat transfer during the melting of a snowflake on a hotplate.
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Short summary
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024, https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Short summary
Our research analyzed China's wind speed data and addressed inconsistencies caused by factors like equipment changes and station relocations. After improving data quality, China's recent wind speed decrease reduced by 41 %, revealing an increasing trend. This emphasizes the importance of rigorous data processing for accurate trend assessments in various research fields.
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Short summary
This study assesses the quality of Aeolus wind measurements over the tropical Atlantic. The results identified the accuracy and precision of the Aeolus wind measurements and the potential source of errors. For instance, the study revealed atmospheric conditions that can deteriorate the measurement quality, such as weaker laser signal in cloudy or dusty conditions, and confirmed the presence of an orbital-dependant bias. These results can help to improve the Aeolus wind measurement algorithm.
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024, https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Short summary
The rate at which energy is dissipated in a turbulent flow is an extremely important quantity. In the atmosphere, it is usually measured by recording a velocity time at a specific location. Our goal is to understand how best to estimate the dissipation rate from such data based on various available methods. Our reference for evaluating the performance of the different methods is data generated with direct numerical simulations and in highly controlled laboratory setups.
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech., 17, 135–144, https://doi.org/10.5194/amt-17-135-2024, https://doi.org/10.5194/amt-17-135-2024, 2024
Short summary
Short summary
The Marine Weather Observer (MWO) system completed a long-term observation, actively approaching the center of Typhoon Sinlaku on 24 July–2 August 2020, over the South China Sea. The in situ observations were evaluated through comparison with buoy observations during the evolution of Typhoon Sinlaku. As a mobile observation station, MWO has shown its unique advantages over traditional observation methods, and the results preliminarily demonstrate the reliable observation capability of MWO.
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023, https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary
Short summary
Atmospheric measurements were completed for two total solar eclipses. An eclipse-specific weather model was utilized to model the atmosphere before, during, and after the eclipse events. These measurements have enabled further validation of the model's performance in simulating atmospheric responses to total solar eclipses. The paper concludes by recommending further scientific analyses to be explored utilizing the unique datasets presented.
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023, https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
Short summary
We present the first study of extended field observations made by a network of 80 automatic hail sensors from Switzerland. The sensors record the exact timing of hailstone impacts, providing valuable information about the local duration of hailfall. We found that the majority of hailfalls lasts just a few minutes and that most hailstones, including the largest, fall during a first phase of high hailstone density, while a few remaining and smaller hailstones fall in a second low-density phase.
Najmeh Kaffashzadeh
Atmos. Meas. Tech., 16, 3085–3100, https://doi.org/10.5194/amt-16-3085-2023, https://doi.org/10.5194/amt-16-3085-2023, 2023
Short summary
Short summary
Although quality control is a well-known issue in data application, research initiatives and organizations apply given methods based on traditional techniques (ad hoc thresholds and manual). These approaches are not only error prone but also unsuitable for a large volume of data. The method proposed in this paper is based on a new concept (probability) as an intuitive indicator and data’s characteristics, which leads it to be applicable to a wide variety of data and eases its
fit for purpose.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Chih-Chun Chou, Paul J. Kushner, Stéphane Laroche, Zen Mariani, Peter Rodriguez, Stella Melo, and Christopher G. Fletcher
Atmos. Meas. Tech., 15, 4443–4461, https://doi.org/10.5194/amt-15-4443-2022, https://doi.org/10.5194/amt-15-4443-2022, 2022
Short summary
Short summary
Aeolus is the first satellite that provides global wind profile measurements. The mission aims to improve the weather forecasts in the tropics, but also, potentially, in the polar regions. We evaluate the performance of the instrument over the Canadian North and the Arctic by comparing its measured winds in both cloudy and non-cloudy layers to wind data from forecasts, reanalysis, and ground-based instruments. Overall, good agreement was seen, but Aeolus winds have greater dispersion.
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irene Erner, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary
Short summary
We investigate the boundary-layer (BL) height and surface stability in southern Finland using radiosondes, a microwave radiometer and ERA5 reanalysis. Accurately quantifying the BL height is challenging, and the diagnosed BL height can depend strongly on the method used. Microwave radiometers provide reliable estimates of the BL height but only in unstable conditions. ERA5 captures the BL height well except under very stable conditions, which occur most commonly at night during the warm season.
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022, https://doi.org/10.5194/amt-15-811-2022, 2022
Short summary
Short summary
AMDAR temperatures suffer from a bias, which can be related to a difference in the timing of height and measurement and to internal corrections applied to pressure altitude. Based on NWP model temperature data, combined with Mach number and true airspeed, we could estimate corrections. Comparing corrected temperatures with (independent) radiosonde observations demonstrates a reduction in the bias, from 0.5 K to around zero, and standard deviation, of almost 10 %.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021, https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Short summary
We evaluated the suitability of fiber-optic distributed temperature sensing (DTS) for observing spatial (>25 cm) and temporal (>1 s) details of airflow within and above forests. The DTS measurements could discern up to third-order moments of the flow and observe spatial details of coherent flow motions. Similar measurements are not possible with more conventional measurement techniques. Hence, the DTS measurements will provide key insights into flows close to roughness elements, e.g. trees.
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Short summary
This study provides an overview of validation activities to determine the Aeolus HLOS wind errors and to understand the biases by investigating possible dependencies and testing bias correction approaches. To ensure meaningful validation statistics, collocated radiosondes and two different global NWP models, the ECMWF IFS and the ICON model (DWD), are used as reference data. To achieve an estimate for the Aeolus instrumental error the representativeness errors for the comparisons are evaluated.
Rumeng Li, Qinghong Zhang, Juanzhen Sun, Yun Chen, Lili Ding, and Tian Wang
Atmos. Meas. Tech., 14, 785–801, https://doi.org/10.5194/amt-14-785-2021, https://doi.org/10.5194/amt-14-785-2021, 2021
Short summary
Short summary
In this paper, we describe a bias-correction method based on machine learning without the need to obtain users' personal information and demonstrate that the method can effectively reduce the bias in smartphone pressure observations. The characteristics of this dataset are discussed, and the potential application of the bias-corrected data is illustrated by the fine-scale analysis of a hailstorm that occurred on 10 June 2016 in Beijing, China.
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Adam Theisen, Max Ungar, Bryan Sheridan, and Bradley G. Illston
Atmos. Meas. Tech., 13, 4699–4713, https://doi.org/10.5194/amt-13-4699-2020, https://doi.org/10.5194/amt-13-4699-2020, 2020
Short summary
Short summary
A low-cost weather station with 3D-printed components was built, based on the UCAR 3D-PAWS project, and deployed alongside an Oklahoma Mesonet station for an 8-month study to determine the longevity of these sensors and their performance compared with standard commercial sensors. Results show that the low-cost sensors can perform as well as the more expensive commercial ones for short-term deployments with the possibility for long-term deployments with proper maintenance and replacement.
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020, https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. However, the wind profile across China remains poorly understood. Here we reveal the salient features of winds from the radar wind profile of China, including the main instruments, spatial coverage and sampling frequency. This work is expected to allow the public and scientific community to be more familiar with the nationwide network and encourage the use of these valuable data in future research and applications.
Tyler M. Bell, Brian R. Greene, Petra M. Klein, Matthew Carney, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 3855–3872, https://doi.org/10.5194/amt-13-3855-2020, https://doi.org/10.5194/amt-13-3855-2020, 2020
Short summary
Short summary
It is well known that the atmospheric boundary layer is under-sampled in the vertical dimension. Recently, weather-sensing uncrewed aerial systems (WxUAS) have created new opportunities to sample this region of the atmosphere. This study compares a WxUAS developed at the University of Oklahoma to ground-based remote sensing and radiosondes. We find that overall the systems generally agreed well both thermodynamically and kinematically. However, there is still room to improve each system.
Hubert Luce and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 13, 1989–1999, https://doi.org/10.5194/amt-13-1989-2020, https://doi.org/10.5194/amt-13-1989-2020, 2020
Short summary
Short summary
Vertical ascent rate Vb of meteorological balloons is sometimes used for retrieving vertical air velocity, an important parameter for meteorological applications. Comparisons with concurrent radar and unmanned aerial vehicle (UAV) measurements of atmospheric turbulence showed that Vb can be increased in turbulent layers due to the probable decrease in the drag coefficient of the balloon. We conclude that Vb can also potentially be used for the detection of atmospheric turbulence.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Tara Hanlon and David Risk
Atmos. Meas. Tech., 13, 191–203, https://doi.org/10.5194/amt-13-191-2020, https://doi.org/10.5194/amt-13-191-2020, 2020
Short summary
Short summary
In this study, we aimed to improve accuracy of wind speed and direction measurements from an anemometer mounted atop a research vehicle. Controlled field tests and computer simulations showed that the vehicle shape biases airflow above the vehicle. The results indicate that placing an anemometer at a significant height (> 1 m) above the vehicle, and calibrating anemometer measurements for vehicle shape and wind angle, can be effective in reducing bias in measurements of wind speed and direction.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Alfredo Peña, Ebba Dellwik, and Jakob Mann
Atmos. Meas. Tech., 12, 237–252, https://doi.org/10.5194/amt-12-237-2019, https://doi.org/10.5194/amt-12-237-2019, 2019
Short summary
Short summary
We propose a method to assess the accuracy of turbulence measurements by sonic anemometers. The idea is to compute the ratio of the vertical to along-wind velocity spectrum within the inertial subrange. We found that the Metek USA-1 and the Campbell CSAT3 sonic anemometers do not show the expected theoretical ratio. A wind-tunnel-based correction recovers the expected ratio for the USA-1. A correction for the CSAT3 does not, illustrating that this sonic anemometer suffers from flow distortion.
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Short summary
The GRUAN processor is a software developed to collocate radiosonde profiles and numerical weather prediction model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate the radiosonde uncertainties in that simulation. This work responds to an identified lack of metrologically traceable characterisation of uncertainties in model fields that are increasingly used for the validation and calibration of space-borne instruments.
Fenghua Zhou, Rongwang Zhang, Rui Shi, Ju Chen, Yunkai He, Dongxiao Wang, and Qiang Xie
Atmos. Meas. Tech., 11, 6091–6106, https://doi.org/10.5194/amt-11-6091-2018, https://doi.org/10.5194/amt-11-6091-2018, 2018
Short summary
Short summary
In this work, successive air–sea heat flux-related data were acquired over the course of a year (01/02/2016–31/01/2017) at the YXASFT on Yongxing Island. Then, seasonal comparisons were conducted for the daily mean surface bulk variables and heat fluxes between the WHOI OAFlux products and YXASFT observations. The conclusions in this paper will provide useful reference for researchers on how to select the appropriate OAFlux datasets in different seasons over the South China Sea.
Dong-Kyun Kim and Chang-Keun Song
Atmos. Meas. Tech., 11, 3851–3860, https://doi.org/10.5194/amt-11-3851-2018, https://doi.org/10.5194/amt-11-3851-2018, 2018
Short summary
Short summary
A new technique to estimate vertical velocities from Parsivel-measured drop and velocity spectra is developed. The estimated vertical velocities (w) were compared with w components of winds measured from the anemometer at the same site. They showed good agreement with each other, suggesting that this technique is reliable and applicable to rainfall studies. With these w values, rainfall characteristics related to up-/downdraft were investigated on the windward and leeward sides of a mountain.
Gerald M. Lohmann and Adam H. Monahan
Atmos. Meas. Tech., 11, 3131–3144, https://doi.org/10.5194/amt-11-3131-2018, https://doi.org/10.5194/amt-11-3131-2018, 2018
Short summary
Short summary
Using high-resolution surface irradiance data with original temporal resolutions between 0.01 s and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability.
Astrid Lampert, Jörg Hartmann, Falk Pätzold, Lennart Lobitz, Peter Hecker, Katrin Kohnert, Eric Larmanou, Andrei Serafimovich, and Torsten Sachs
Atmos. Meas. Tech., 11, 2523–2536, https://doi.org/10.5194/amt-11-2523-2018, https://doi.org/10.5194/amt-11-2523-2018, 2018
Short summary
Short summary
We compared two different fast-response humidity sensors simultaneously on different airborne platforms. One is a particular, well-establed Lyman-alpha hygrometer that has been used for decades as the standard for fast airborne humidity measurements. However, it is not available any more. The other one is a hygrometer based on the absorption of infrared radiation, from LI-COR. For an environment of low vibrations, the LI-COR sensor is suitable for fast airborne water vapour measurements.
Nicholas Zelasko, Adam Wettlaufer, Bujidmaa Borkhuu, Matthew Burkhart, Leah S. Campbell, W. James Steenburgh, and Jefferson R. Snider
Atmos. Meas. Tech., 11, 441–458, https://doi.org/10.5194/amt-11-441-2018, https://doi.org/10.5194/amt-11-441-2018, 2018
Short summary
Short summary
The hotplate precipitation gauge has the potential to solve some problems with conventional precipitation gauge measurements, especially for snowfall. This paper extends the seminal published work, Rasmussen et al. (2011). We assert that the precipitation rate algorithm we have developed for the hotplate is an improvement on that which was previously published.
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Hannah K. Huelsing, Junhong Wang, Carl Mears, and John J. Braun
Atmos. Meas. Tech., 10, 4055–4066, https://doi.org/10.5194/amt-10-4055-2017, https://doi.org/10.5194/amt-10-4055-2017, 2017
Short summary
Short summary
The precipitable water (PW) was examined for the 2013 Colorado flood to determine how climatologically abnormal this event was. The seasonal PW maximum extended into early September and the September monthly mean PW exceeded the 99th percentile of climatology with a value 25% higher than the 40-year climatology. The above-normal, near-saturation PW values during the flood were the result of large-scale moisture transport into Colorado from the eastern tropical Pacific and the Gulf of Mexico.
Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue
Atmos. Meas. Tech., 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017, https://doi.org/10.5194/amt-10-2485-2017, 2017
Short summary
Short summary
The model RS92 radiosonde manufactured by Vaisala Ltd. is now being replaced with a successor model, the RS41, and we need to clarify accuracy differences between them for a variety of research. For this purpose, 36 twin-radiosonde flights were performed over the oceans from the Arctic to the tropics. Basically the differences between the RS41 and RS92 were smaller than the nominal combined uncertainties of the RS41; however, we found non-negligible biases in relative humidity and pressure.
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017, https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Short summary
In this paper we evaluate the performance of two estimates of the global horizontal irradiance (GHI), one derived from the Meteosat Second Generation and one from a meteorological model (Regional Atmospheric Modeling System) forecast. The focus area is Italy, and the performance is evaluated for 12 pyranometers spanning a range of climate conditions, from Mediterranean maritime to Alpine.
Armin Sigmund, Lena Pfister, Chadi Sayde, and Christoph K. Thomas
Atmos. Meas. Tech., 10, 2149–2162, https://doi.org/10.5194/amt-10-2149-2017, https://doi.org/10.5194/amt-10-2149-2017, 2017
Dietmar J. Baumgartner, Werner Pötzi, Heinrich Freislich, Heinz Strutzmann, Astrid M. Veronig, and Harald E. Rieder
Atmos. Meas. Tech., 10, 1181–1190, https://doi.org/10.5194/amt-10-1181-2017, https://doi.org/10.5194/amt-10-1181-2017, 2017
Short summary
Short summary
In this work we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a platform-independent, fully automated, and cost-effective system to evaluate the pointing accuracy of Sun-tracking devices as well as its application at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site and to the results from a 15-week evaluating period.
Samuel T. Buisán, Michael E. Earle, José Luís Collado, John Kochendorfer, Javier Alastrué, Mareile Wolff, Craig D. Smith, and Juan I. López-Moreno
Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, https://doi.org/10.5194/amt-10-1079-2017, 2017
Short summary
Short summary
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies tipping bucket precipitation gauge, widely used at AEMET, was assessed against the SPICE reference.
Most countries use tipping buckets and for this reason the underestimation of snowfall precipitation is a large-scale problem.
The methodology presented here can be used by other national weather services to test precipitation bias corrections and to identify regions where errors are higher.
Rosa Delia García, Emilio Cuevas, Omaira Elena García, Ramón Ramos, Pedro Miguel Romero-Campos, Fernado de Ory, Victoria Eugenia Cachorro, and Angel de Frutos
Atmos. Meas. Tech., 10, 731–743, https://doi.org/10.5194/amt-10-731-2017, https://doi.org/10.5194/amt-10-731-2017, 2017
Short summary
Short summary
A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.
Wengang Zhang, Guirong Xu, Yuanyuan Liu, Guopao Yan, Dejun Li, and Shengbo Wang
Atmos. Meas. Tech., 10, 155–165, https://doi.org/10.5194/amt-10-155-2017, https://doi.org/10.5194/amt-10-155-2017, 2017
Short summary
Short summary
A comparison between a microwave radiometer and radiosonde is carried out, and performances of zenith and off-zenith observations during snowfall are shown. In off-zenith observations, the effect of snow is obviously mitigated, and the deviation between microwave radiometer and radiosonde is small. With the aid of off-zenith observation, reliable thermodynamic atmospheric profiles can be collected, and those will be useful for the analysis and forecasting of severe convective weather.
Mattia Stagnaro, Matteo Colli, Luca Giovanni Lanza, and Pak Wai Chan
Atmos. Meas. Tech., 9, 5699–5706, https://doi.org/10.5194/amt-9-5699-2016, https://doi.org/10.5194/amt-9-5699-2016, 2016
Short summary
Short summary
The research presented in this work involves field data analysis, numerical modelling techniques and approaches to a long-standing problem of liquid precipitation measurements: the sampling and the interpretation of the tipping-bucket sensor signal. The present study shows relevant implications of the adopted data processing methods for the accuracy of the rainfall intensity measurements provided by traditional tipping-bucket gauges.
Michael P. Jensen, Donna J. Holdridge, Petteri Survo, Raisa Lehtinen, Shannon Baxter, Tami Toto, and Karen L. Johnson
Atmos. Meas. Tech., 9, 3115–3129, https://doi.org/10.5194/amt-9-3115-2016, https://doi.org/10.5194/amt-9-3115-2016, 2016
Short summary
Short summary
An intercomparison of Vaisala's latest-generation radiosonde RS41 and the widely used RS92 was performed in north-central Oklahoma, USA, during June 2014. The results indicate that for the conditions observed during the intercomparison the measurements of pressure, temperature, humidity, and winds agree to within the manufacturer-specified combined uncertainties. Some important exceptions were noted when exiting liquid cloud layers where evaporative cooling has less impact for RS41 measurements.
Karl Bumke, Gert König-Langlo, Julian Kinzel, and Marc Schröder
Atmos. Meas. Tech., 9, 2409–2423, https://doi.org/10.5194/amt-9-2409-2016, https://doi.org/10.5194/amt-9-2409-2016, 2016
Short summary
Short summary
Satellite-derived HOAPS and ERA-Interim reanalysis data were validated against shipboard precipitation measurements. Results show that HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially at low latitudes. However, HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide precipitation rate is close to measurements. ERA-Interim strongly overestimates it in the intertropical convergence zone and southern subtropics.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
K.-L. Chang, S. Guillas, and V. E. Fioletov
Atmos. Meas. Tech., 8, 4487–4505, https://doi.org/10.5194/amt-8-4487-2015, https://doi.org/10.5194/amt-8-4487-2015, 2015
Short summary
Short summary
The aim of this article is to analyze the total column ozone data from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) that consists of around 150 stations irregularly spaced over the globe. Our use of a new statistical spatial technique over the globe can greatly outperform the currently used spatial approximation of the total column ozone in terms of approximation. We feel that this technique could benefit the ozone science community.
A. K. Vance, S. J. Abel, R. J. Cotton, and A. M. Woolley
Atmos. Meas. Tech., 8, 1617–1625, https://doi.org/10.5194/amt-8-1617-2015, https://doi.org/10.5194/amt-8-1617-2015, 2015
Short summary
Short summary
Comparisons on the FAAM BAe 146-301 aircraft show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet (wvssR) in coud-free conditions, but a WVSS-II fed from the standard flush inlet (wvssF) over-reads, except at higher humidities. Case studies in cloudy conditions show that wvssF is immune to liquid water and ice, whilst wvssR is susceptible to both. Both WVSS-II inlets respond much more rapidly than the chilled mirror devices, especially wvssF.
Cited articles
Burns, S. P., Horst, T. W., Jacobsen, L., Blanken, P. D., and Monson, R. K.:
Using sonic anemometer temperature to measure sensible heat flux in strong
winds, Atmos. Meas. Tech., 5, 2095–2111,
https://doi.org/10.5194/amt-5-2095-2012, 2012.
Dyer, A. J.: Flow distorsion by supporting structures, Bound.-Lay. Meteorol.,
20, 243–251, 1981.
Dyer, A. J., Garratt, J. R., Francey, R. J., McIlroy, I. C., Bacon, N. E.,
Bradley, E. F., Denmead, O. T., Tsvang, L. R., Volkov, Y. A., Koprov, B. M.,
Elagina, L. G., Sahashi, K., Monji, N., Hanafusa, T., Tsukamoto, O., Frenzen,
P., Hicks, B. B., Wesely, M., Miyake, M., Shaw, W., Hyson, P., McIlroy, I.
C., Bacon, N. E., Victoria, A., Bradley, E. F., Tsvang, L. R., Volkov, Y. A.,
Koprov, B. M., Elagina, L. G., Sahashi, K., Monji, N., Hanafusa, T., Hicks,
B. B., Frenzen, P., Wesely, M., Miyake, M., and Shaw, W.: An international
turbulence comparison experiment (ITCE-76), Bound.-Lay. Meteorol., 24,
181–209, 1982.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux
measurements, J. Geophys. Res., 106, 3503–3509, https://doi.org/10.1029/2000JD900731,
2001.
Foken, T. and Oncley, S. P.: Workshop on instrumental and methodical problems
of land surface flux measurements, B. Am. Meteorol. Soc., 76, 1191–1193,
1995.
Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.:
Post-field data quality control, in Handbook of Micrometeorology, A Guide for
Surface Flux Measurement and Analysis, edited by: Lee, X., Massman, W., and
Law, B., Kluwer Academic Publishers, Dordrecht, 181–208, 2004.
Frank, J. M., Massman, W. J., and Ewers, B. E.: Underestimates of sensible
heat flux due to vertical velocity measurement errors in non-orthogonal sonic
anemometers, Agr. Forest Meteorol., 171–172, 72–81,
https://doi.org/10.1016/j.agrformet.2012.11.005, 2013.
Frank, J. M., Massman, W. J., Swiatek, E., Zimmerman, H. A., and Ewers, B.
E.: All sonic anemometers need to correct for transducer and structural
shadowing in their velocity measurements, J. Atmos. Ocean. Tech., 33,
149–167, https://doi.org/10.1175/JTECH-D-15-0171.1, 2016.
Gash, J. H. C. and Dolman, A. J.: Sonic anemometer (co)sine response and flux
measurement: I. The potential for (co)sine error to affect sonic
anemometer-based flux measurements, Agr. Forest Meteorol., 119, 195–207,
https://doi.org/10.1016/S0168-1923(03)00137-0, 2003.
Grare, L., Lenain, L., and Melville, W. K.: The Influence of Wind Direction
on Campbell Scientific CSAT3 and Gill R3-50 Sonic Anemometer Measurements, J.
Atmos. Ocean. Tech., 33, 2477–2497, https://doi.org/10.1175/JTECH-D-16-0055.1, 2016.
Grelle, A. and Lindroth, A.: Flow Distortion by a Solent Sonic Anemometer:
Wind Tunnel Calibration and Its Assessment for Flux Measurements over Forest
and Field, J. Atmos. Ocean. Tech., 11, 1529–1542,
https://doi.org/10.1175/1520-0426(1994)011<1529:FDBASS>2.0.CO;2, 1994.
Högström, U.: A critical evaluation of the aerodynamical error of a
turbulence instrument, J. Appl. Meteorol., 21, 1838–1844, 1982.
Högström, U. and Smedman, A. S.: Accuracy of sonic anemometers:
Laminar wind-tunnel calibrations compared to atmospheric in situ calibrations
against a reference instrument, Bound.-Lay. Meteorol., 111, 33–54,
https://doi.org/10.1023/B:BOUN.0000011000.05248.47, 2004.
Horst, T. W., Semmer, S. R., and Maclean, G.: Correction of a Non-orthogonal,
Three-Component Sonic Anemometer for Flow Distortion by Transducer Shadowing,
Bound.-Lay. Meteorol., 155, 371–395, https://doi.org/10.1007/s10546-015-0010-3, 2015.
Huq, S., De Roo, F., Foken, T., and Mauder, M.: Evaluation of probe-induced
flow distortion of Campbell CSAT3 sonic anemometers by numerical simulation,
Bound.-Lay. Meteorol., 164, 9–28, https://doi.org/10.1007/s10546-017-0264-z, 2017.
Kaimal, J.: Sonic Anemometer Measurement of Atmospheric Turbulence, in:
Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in
Unsteady Flows, edited by: Hanson, B. W., Springer Netherlands, 551–565,
1979.
Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer Flows: Their
Structure and Measurement, Oxford University Press, New York, NY, 1994.
Kochendorfer, J., Meyers, T. P., Heuer, M. W., Frank, J. M., Massman, W. J.,
and Heuer, M. W.: How well can we measure the vertical wind speed?
Implications for the fluxes of energy and mass, Bound.-Lay. Meteorol., 145,
383–398, https://doi.org/10.1007/s10546-012-9738-1, 2012.
Kochendorfer, J., Meyers, T. P., Frank, J. M., Massman, W. J., and Heuer, M.
W.: Reply to the Comment by Mauder on “How Well Can We Measure the Vertical
Wind Speed? Implications for Fluxes of Energy and Mass”, Bound.-Lay.
Meteorol., 147, 337–345, https://doi.org/10.1007/s10546-012-9792-8, 2013.
Loescher, H. W., Ocheltree, T., Tanner, B., Swiatek, E., Dano, B., Wong, J.,
Zimmerman, G., Campbell, J., Stock, C., Jacobsen, L., Shiga, Y., Kollas, J.,
Liburdy, J., and Law, B. E.: Comparison of temperature and wind statistics in
contrasting environments among different sonic anemometer-thermometers, Agr.
Forest Meteorol., 133, 119–139, https://doi.org/10.1016/j.agrformet.2005.08.009, 2005.
Lugauer, M. and Winkler, P.: Thermal circulation in South Bavaria –
climatology and synoptic aspects, Meteorol. Z., 14, 15–30,
https://doi.org/10.1127/0941-2948/2005/0014-0015, 2005.
Manuilova, E., Schuetzenmeister, A., and Model, F.: mcr: Method Comparison
Regression, available at: https://cran.r-project.org/packag=mcr, 2014.
Mauder, M.: A comment on “How well can we measure the vertical wind speed?
Implications for fluxes of energy and mass” by Kochendorfer et al.,
Bound.-Lay. Meteorol., 147, 329–335, https://doi.org/10.1007/s10546-012-9794-6, 2013.
Mauder, M. and Foken, T.: Eddy-Covariance Software TK3, available at:
https://doi.org/10.5281/zenodo.20349, 2015.
Mauder, M., Liebethal, C., Göckede, M., Leps, J. P., Beyrich, F., and
Foken, T.: Processing and quality control of flux data during LITFASS-2003,
Bound.-Lay. Meteorol., 121, 67–88, https://doi.org/10.1007/s10546-006-9094-0, 2006.
Mauder, M., Oncley, S. P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer,
C., Foken, T., Kohsiek, W., Bruin, H. A. R., and Liu, H.: The energy balance
experiment EBEX-2000, Part II: Intercomparison of eddy-covariance sensors and
post-field data processing methods, Bound.-Lay. Meteorol., 123, 29–54,
https://doi.org/10.1007/s10546-006-9139-4, 2007.
Miyake, M., Stewart, R. W., Burling, H. W., Tsvang, L. R., Koprov, B. M., and
Kuznetsov, O. A.: Comparison of acoustic instruments in an atmospheric
turbulent flow over water, Bound.-Lay. Meteorol., 2, 228–245, 1971.
Moore, C. J.: Frequency response corrections for eddy correlation systems,
Bound.-Lay. Meteorol., 37, 17–35, https://doi.org/10.1007/BF00122754, 1986.
Nakai, T. and Shimoyama, K.: Ultrasonic anemometer angle of attack errors
under turbulent conditions, Agr. Forest Meteorol., 162–163, 14–26,
https://doi.org/10.1016/j.agrformet.2012.04.004, 2012.
Nakai, T., van der Molen, M. K., Gash, J. H. C., and Kodama, Y.: Correction
of sonic anemometer angle of attack errors, Agr. Forest Meteorol., 136,
19–30, https://doi.org/10.1016/j.agrformet.2006.01.006, 2006.
R_Core_Team: A language and environment for statistical computing,
available at: https://www.r-project.org/, 2016.
Richardson, A. D., Aubinet, M., Barr, A. G., Hollinger, D. Y., Ibrom, A.,
Lasslop, G., and Reichstein, M.: Uncertainty quantification, in: Eddy
Covariance: A Practical Guide to Measurement and Data Analysis, edited by:
Aubinet, M., Vesala, T., and Papale, D., Springer, Dordrecht, 173–210, 2012.
Stoy, P. C., Mauder, M., Foken, T., Marcolla, B., Boegh, E., Ibrom, A.,
Arain, M. A., Arneth, A., Aurela, M., Bernhofer, C., Cescatti, A., Dellwik,
E., Duce, P., Gianelle, D., van Gorsel, E., Kiely, G., Knohl, A., Margolis,
H., Mccaughey, H., Merbold, L., Montagnani, L., Papale, D., Reichstein, M.,
Saunders, M., Serrano-Ortiz, P., Sottocornola, M., Spano, D., Vaccari, F.,
and Varlagin, A.: A data-driven analysis of energy balance closure across
FLUXNET research sites: The role of landscape-scale heterogeneity, Agr.
Forest. Meteorol., 171–172, 137–152, https://doi.org/10.1016/j.agrformet.2012.11.004,
2013.
Tsvang, L. R., Koprov, B. M., Zubkovskii, S. L., Dyer, A. J., Hicks, B.,
Miyake, M., Stewart, R. W., and McDonald, J. W.: A comparison of turbulence
measurements by different instruments; Tsimlyansk field experiment 1970,
Bound.-Lay. Meteorol., 3, 499–521, 1973.
Tsvang, L. R., Zubkovskij, S. L., Kader, B. A., Kallistratova, M. A., Foken,
T., Gerstmann, W., Przandka, Z., Pretel, J., Zelenny, J., and Keder, J.:
International turbulence comparison experiment (ITCE-81), Bound.-Lay.
Meteorol., 31, 325–348, 1985.
van der Molen, M. K., Gash, J. H. C., and Elbers, J. A.: Sonic anemometer
(co)sine response and flux measurement, II. The effect of introducing an
angle of attack dependent calibration, Agr. Forest Meteorol., 122, 95–109,
https://doi.org/10.1016/j.agrformet.2003.09.003, 2004.
Vogt, R.: Theorie, Technik und Analyse der experimentellen Flussbestimmung am
Beispiel des Hartheimer Kiefernwaldes, Wepf, Basel, 101 pp., 1995.
Wieser, A., Fiedler, F., and Corsmeier, U.: The influence of the sensor
design on wind measurements with sonic anemometer systems, J. Atmos. Ocean.
Tech., 18, 1585–1608, https://doi.org/10.1175/1520-0426(2001)018<1585:TIOTSD>2.0.CO;2,
2001.
Wolf, B., Chwala, C., Fersch, B., Gravelmann, J., Junkermann, W., Zeeman, M.
J., Angerer, A., Adler, B., Beck, C., Brosy, C., Brugger, P., Emeis, S.,
Dannenmann, M., De Roo, F., Diaz-Pines, E., Haas, E., Hagen, M., Hajsek, I.,
Jacobeit, J., Jagdhuber, T., Kalthoff, N., Kiese, R., Kunstmann, H., Kosak,
O., Krieg, R., Malchow, C., Mauder, M., Merz, R., Notarnicola, C., Philipp,
A., Reif, W., Reineke, S., Rödiger, T., Ruehr, N., Schäfer, K.,
Schrön, M., Senatore, A., Shupe, H., Völksch, I., Wanninger, C.,
Zacharias, S., and Schmid, H. P.: The ScaleX campaign: scale-crossing
land-surface and boundary layer processes in the TERENO-preAlpine
observatory, B. Am. Meteorol. Soc., 98, 1217–1234,
https://doi.org/10.1175/BAMS-D-15-00277.1, 2017.
Zeeman, M. J., Mauder, M., Steinbrecher, R., Heidbach, K., Eckart, E., and
Schmid, H. P.: Reduced snow cover affects productivity of upland temperate
grasslands, Agr. Forest Meteorol., 232, 514–526,
https://doi.org/10.1016/j.agrformet.2016.09.002, 2017.
Zhang, S. F., Wyngaard, J. C., Businger, J. A., and Oncley, S. P.: Response
characteristics of the U.W. sonic anemometer, J. Atmos. Ocean. Tech., 3,
315–323, https://doi.org/10.1175/1520-0426(1986)003<0315:RCOTUS>2.0.CO;2, 1986.