Articles | Volume 11, issue 8
https://doi.org/10.5194/amt-11-4671-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-4671-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements
Ioana Elisabeta Popovici
CORRESPONDING AUTHOR
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
R&D Department, Cimel Electronique, 75011 Paris, France
Philippe Goloub
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Thierry Podvin
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Luc Blarel
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Rodrigue Loisil
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Florin Unga
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Augustin Mortier
Division for Climate Modelling and Air Pollution, Norwegian Meteorological Institute, 0313 Oslo, Norway
Christine Deroo
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Stéphane Victori
R&D Department, Cimel Electronique, 75011 Paris, France
Fabrice Ducos
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Benjamin Torres
GRASP-SAS, Remote sensing developments, Univ. Lille, 59650 Villeneuve
d'Ascq, France
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Cyril Delegove
Univ. Lille, CNRS, UMR8518 – LOA – Laboratoire d'Optique
Atmosphérique, 59000 Lille, France
Marie Choël
Univ. Lille, CNRS, UMR8516 – LASIR – Laboratoire de Spectrochimie
Infrarouge et Raman, 59000 Lille, France
Nathalie Pujol-Söhne
Modelling Department, ATMO Hauts-de-France, 59000 Lille, France
Christophe Pietras
Ecole Polytéchnique, CNRS, Laboratoire de Météorologie
Dynamique, 91120 Palaiseau, France
Related authors
Yenny González, María F. Sánchez-Barrero, Ioana Popovici, África Barreto, Stephane Victori, Ellsworth J. Welton, Rosa D. García, Pablo G. Sicilia, Fernando A. Almansa, Carlos Torres, and Philippe Goloub
EGUsphere, https://doi.org/10.5194/egusphere-2024-2727, https://doi.org/10.5194/egusphere-2024-2727, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We characterize the optical properties of various aerosols using a compact dual-wavelength depolarization lidar (CIMEL CE376) at 532 and 808 nm. Through a modified two-wavelength Klett inversion method, we assess the vertical distribution and temporal evolution of Saharan dust, volcanic aerosols, and wildfire smoke in the subtropical North Atlantic from August 2021 to August 2023. The study confirms the CE376 lidar's effectiveness in monitoring and characterizing atmospheric aerosols over time.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1269, https://doi.org/10.5194/acp-2020-1269, 2021
Preprint withdrawn
Short summary
Short summary
This study reports results from MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) in North China Plain in may 2017, a unique campaign involving a van equipped with remote sensing and in situ instruments to perform on-road mobile measurements. Aerosol optical properties and mass concentration profiles were derived, capturing the fine spatial distribution of pollution and concentration levels.
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Juan-Antonio Bravo-Aranda, Ioana Elisabeta Popovici, Thierry Podvin, Martial Haeffelin, Anton Lopatin, Oleg Dubovik, Christophe Pietras, Xin Huang, Benjamin Torres, and Cheng Chen
Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, https://doi.org/10.5194/acp-19-1173-2019, 2019
Short summary
Short summary
Smoke plumes generated in Canadian fire activities were elevated to the lower stratosphere and transported from North America to Europe. The smoke plumes were observed by three lidar systems in northern France. This study provides a comprehensive characterization for aged smoke aerosols at high altitude using lidar observations. It presents that fire activities on the Earth's surface can be an important contributor of stratospheric aerosols and impact the Earth's radiation budget.
Yenny González, María F. Sánchez-Barrero, Ioana Popovici, África Barreto, Stephane Victori, Ellsworth J. Welton, Rosa D. García, Pablo G. Sicilia, Fernando A. Almansa, Carlos Torres, and Philippe Goloub
EGUsphere, https://doi.org/10.5194/egusphere-2024-2727, https://doi.org/10.5194/egusphere-2024-2727, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We characterize the optical properties of various aerosols using a compact dual-wavelength depolarization lidar (CIMEL CE376) at 532 and 808 nm. Through a modified two-wavelength Klett inversion method, we assess the vertical distribution and temporal evolution of Saharan dust, volcanic aerosols, and wildfire smoke in the subtropical North Atlantic from August 2021 to August 2023. The study confirms the CE376 lidar's effectiveness in monitoring and characterizing atmospheric aerosols over time.
Henk Eskes, Athanasios Tsikerdekis, Melanie Ades, Mihai Alexe, Anna Carlin Benedictow, Yasmine Bennouna, Lewis Blake, Idir Bouarar, Simon Chabrillat, Richard Engelen, Quentin Errera, Johannes Flemming, Sebastien Garrigues, Jan Griesfeller, Vincent Huijnen, Luka Ilić, Antje Inness, John Kapsomenakis, Zak Kipling, Bavo Langerock, Augustin Mortier, Mark Parrington, Isabelle Pison, Mikko Pitkänen, Samuel Remy, Andreas Richter, Anja Schoenhardt, Michael Schulz, Valerie Thouret, Thorsten Warneke, Christos Zerefos, and Vincent-Henri Peuch
Atmos. Chem. Phys., 24, 9475–9514, https://doi.org/10.5194/acp-24-9475-2024, https://doi.org/10.5194/acp-24-9475-2024, 2024
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global analyses and forecasts of aerosols and trace gases in the atmosphere. On 27 June 2023 a major upgrade, Cy48R1, became operational. Comparisons with in situ, surface remote sensing, aircraft, and balloon and satellite observations show that the new CAMS system is a significant improvement. The results quantify the skill of CAMS to forecast impactful events, such as wildfires, dust storms and air pollution peaks.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1269, https://doi.org/10.5194/acp-2020-1269, 2021
Preprint withdrawn
Short summary
Short summary
This study reports results from MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) in North China Plain in may 2017, a unique campaign involving a van equipped with remote sensing and in situ instruments to perform on-road mobile measurements. Aerosol optical properties and mass concentration profiles were derived, capturing the fine spatial distribution of pollution and concentration levels.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Marie Boichu, Olivier Favez, Véronique Riffault, Jean-Eudes Petit, Yunjiang Zhang, Colette Brogniez, Jean Sciare, Isabelle Chiapello, Lieven Clarisse, Shouwen Zhang, Nathalie Pujol-Söhne, Emmanuel Tison, Hervé Delbarre, and Philippe Goloub
Atmos. Chem. Phys., 19, 14253–14287, https://doi.org/10.5194/acp-19-14253-2019, https://doi.org/10.5194/acp-19-14253-2019, 2019
Short summary
Short summary
This study, benefiting especially from recently developed mass spectrometry observations of aerosols, highlights unknown properties of volcanic sulfates in the troposphere. It shows their specific chemical fingerprint, distinct from those of freshly emitted industrial sulfates and background aerosols. We also demonstrate the large-scale persistence of the volcanic sulfate pollution over weeks. Hence, these results cast light on the impact of tropospheric eruptions on air quality and climate.
Jose Antonio Benavent-Oltra, Roberto Román, Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, África Barreto, Anton Lopatin, David Fuertes, Milagros Herrera, Benjamin Torres, Oleg Dubovik, Juan Luis Guerrero-Rascado, Philippe Goloub, Francisco Jose Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 14149–14171, https://doi.org/10.5194/acp-19-14149-2019, https://doi.org/10.5194/acp-19-14149-2019, 2019
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different
remote-sensing measurements to obtain the aerosol vertical and column properties, both during the day and at night-time. The column properties are compared with AERONET products, and the vertical properties retrieved by GRASP are compared with in situ measurements at high-altitude stations. As an originality, we proposed three new schemes to retrieve the night-time aerosol properties.
Zhenping Yin, Albert Ansmann, Holger Baars, Patric Seifert, Ronny Engelmann, Martin Radenz, Cristofer Jimenez, Alina Herzog, Kevin Ohneiser, Karsten Hanbuch, Luc Blarel, Philippe Goloub, Gaël Dubois, Stephane Victori, and Fabrice Maupin
Atmos. Meas. Tech., 12, 5685–5698, https://doi.org/10.5194/amt-12-5685-2019, https://doi.org/10.5194/amt-12-5685-2019, 2019
Short summary
Short summary
A new shipborne Sun–sky–lunar photometer was validated through comparisons with collocated MICROTOPS II and multiwavelength Raman polarization lidar measurements during two trans-Atlantic cruises. A full diurnal cycle of mixed dust–smoke episode was captured by both the shipborne photometer and lidar. The coefficient of determination for the linear regression between MICROTOPS II and the shipborne photometer was 0.993 for AOD at 500 nm based on the entire dataset.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Juan-Antonio Bravo-Aranda, Ioana Elisabeta Popovici, Thierry Podvin, Martial Haeffelin, Anton Lopatin, Oleg Dubovik, Christophe Pietras, Xin Huang, Benjamin Torres, and Cheng Chen
Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, https://doi.org/10.5194/acp-19-1173-2019, 2019
Short summary
Short summary
Smoke plumes generated in Canadian fire activities were elevated to the lower stratosphere and transported from North America to Europe. The smoke plumes were observed by three lidar systems in northern France. This study provides a comprehensive characterization for aged smoke aerosols at high altitude using lidar observations. It presents that fire activities on the Earth's surface can be an important contributor of stratospheric aerosols and impact the Earth's radiation budget.
María José Granados-Muñoz, Michael Sicard, Roberto Román, Jose Antonio Benavent-Oltra, Rubén Barragán, Gerard Brogniez, Cyrielle Denjean, Marc Mallet, Paola Formenti, Benjamín Torres, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 19, 523–542, https://doi.org/10.5194/acp-19-523-2019, https://doi.org/10.5194/acp-19-523-2019, 2019
Short summary
Short summary
The influence of mineral dust in the direct radiative effect is affected by a large uncertainty. This study investigates mineral dust radiative properties during an episode affecting southern Spain in June 2013 by using remote sensors and data collected on board an aircraft to feed a radiative transfer model. The study reveals the complexity of parameterizing these models, as characterizing mineral dust is still quite challenging, and the need for accurate mineral dust measurements.
Igor Veselovskii, Philippe Goloub, Qiaoyun Hu, Thierry Podvin, David N. Whiteman, Mikhael Korenskiy, and Eduardo Landulfo
Atmos. Meas. Tech., 12, 119–128, https://doi.org/10.5194/amt-12-119-2019, https://doi.org/10.5194/amt-12-119-2019, 2019
Short summary
Short summary
Methane is currently the second most important greenhouse gas of anthropogenic origin (after carbon dioxide) and its concentration can be increased inside the boundary layer. So, the development of instruments for vertical profiling of the methane mixing ratio is an important task. We present the results of methane profiling in the lower troposphere using LILAS Raman lidar from the Lille University observatory platform (France).
Carlos Toledano, Ramiro González, David Fuertes, Emilio Cuevas, Thomas F. Eck, Stelios Kazadzis, Natalia Kouremeti, Julian Gröbner, Philippe Goloub, Luc Blarel, Roberto Román, África Barreto, Alberto Berjón, Brent N. Holben, and Victoria E. Cachorro
Atmos. Chem. Phys., 18, 14555–14567, https://doi.org/10.5194/acp-18-14555-2018, https://doi.org/10.5194/acp-18-14555-2018, 2018
Short summary
Short summary
Most of the ground-based radiometric networks have their reference instruments and/or calibrate them at Mauna Loa or Izaña. The suitability of these high-mountain stations for absolute radiometric calibrations is investigated with the support of 20 years of first-class Sun photometer data from the AERONET and GAW-PFR networks. We analyze the number of calibration days at each site in a climatological sense and investigate the uncertainty of the calibrations based on long-term statistics.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary
Short summary
This paper introduces a method to use satellite-observed spectral AOD and AAOD to derive three types of aerosol emission sources simultaneously based on inverse modelling at a high spatial and temporal resolution. This study shows it is possible to estimate aerosol emissions and improve the atmospheric aerosol simulation using detailed aerosol optical and microphysical information from satellite observations.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Igor Veselovskii, Philippe Goloub, Thierry Podvin, Didier Tanre, Arlindo da Silva, Peter Colarco, Patricia Castellanos, Mikhail Korenskiy, Qiaoyun Hu, David N. Whiteman, Daniel Pérez-Ramírez, Patrick Augustin, Marc Fourmentin, and Alexei Kolgotin
Atmos. Meas. Tech., 11, 949–969, https://doi.org/10.5194/amt-11-949-2018, https://doi.org/10.5194/amt-11-949-2018, 2018
Short summary
Short summary
Observations of multiwavelength Mie–Raman lidar during smoke episode over West Africa are compared with the vertical distribution of aerosol parameters provided by the MERRA-2 model. The values of modeled and observed extinctions at both 355 nm and 532 nm are also rather close. The model predicts significant concentration of dust particles inside the smoke layer. This is supported by a high depolarization ratio of 15 % observed in the center of this layer.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Kévin Lamy, Thierry Portafaix, Colette Brogniez, Sophie Godin-Beekmann, Hassan Bencherif, Béatrice Morel, Andrea Pazmino, Jean Marc Metzger, Frédérique Auriol, Christine Deroo, Valentin Duflot, Philippe Goloub, and Charles N. Long
Atmos. Chem. Phys., 18, 227–246, https://doi.org/10.5194/acp-18-227-2018, https://doi.org/10.5194/acp-18-227-2018, 2018
Short summary
Short summary
This work focuses on solar radiation in the tropics, more specifically on ultraviolet radiation. From ground-based and satellite observations of the chemical state of the atmosphere, we were able to model the ultraviolet measurements measured in the southern tropics with a very small error. This is a first step to modelling and predicting future ultraviolet levels in the tropics from chemistry-climate projections.
Benjamin Torres, Oleg Dubovik, David Fuertes, Gregory Schuster, Victoria Eugenia Cachorro, Tatsiana Lapyonok, Philippe Goloub, Luc Blarel, Africa Barreto, Marc Mallet, Carlos Toledano, and Didier Tanré
Atmos. Meas. Tech., 10, 3743–3781, https://doi.org/10.5194/amt-10-3743-2017, https://doi.org/10.5194/amt-10-3743-2017, 2017
Short summary
Short summary
This study evaluates the potential of using only aerosol optical depth measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP algorithm. The practical motivation for the present study is the large amount of optical-depth-only measurements that exist in the ground-based networks. The retrievals could complete an existing data set of aerosol properties that is key to understanding aerosol climate effects.
Yevgeny Derimian, Marie Choël, Yinon Rudich, Karine Deboudt, Oleg Dubovik, Alexander Laskin, Michel Legrand, Bahaiddin Damiri, Ilan Koren, Florin Unga, Myriam Moreau, Meinrat O. Andreae, and Arnon Karnieli
Atmos. Chem. Phys., 17, 11331–11353, https://doi.org/10.5194/acp-17-11331-2017, https://doi.org/10.5194/acp-17-11331-2017, 2017
Short summary
Short summary
We present influence of daily occurrence of the sea breeze flow from the Mediterranean Sea on physicochemical and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel. Sampled airborne dust was found be internally mixed with sea-salt particles and reacted with anthropogenic pollution, which makes the dust highly hygroscopic and a liquid coating of particles appears. These physicochemical transformations are associated with a change in aerosol radiative properties.
Lucia T. Deaconu, Fabien Waquet, Damien Josset, Nicolas Ferlay, Fanny Peers, François Thieuleux, Fabrice Ducos, Nicolas Pascal, Didier Tanré, Jacques Pelon, and Philippe Goloub
Atmos. Meas. Tech., 10, 3499–3523, https://doi.org/10.5194/amt-10-3499-2017, https://doi.org/10.5194/amt-10-3499-2017, 2017
Short summary
Short summary
This study presents a comparison between active (CALIOP) and passive (POLDER) remote sensing methods, developed for retrieving aerosol above-cloud optical and microphysical properties. Main results show a good agreement when the aerosol microphysics is dominated by fine-mode particles or coarse-mode dust or when the aerosol layer is well separated from the cloud below. The paper is also focused on understanding the differences between the retrievals and the limitations of each method.
Laura-Hélèna Rivellini, Isabelle Chiapello, Emmanuel Tison, Marc Fourmentin, Anaïs Féron, Aboubacry Diallo, Thierno N'Diaye, Philippe Goloub, Francesco Canonaco, André Stephan Henry Prévôt, and Véronique Riffault
Atmos. Chem. Phys., 17, 10291–10314, https://doi.org/10.5194/acp-17-10291-2017, https://doi.org/10.5194/acp-17-10291-2017, 2017
Short summary
Short summary
A 3-month field campaign was conducted in March–June 2015 in Senegal, as part of the SHADOW (SaHAran Dust Over West Africa) project. This article presents the time variability of the chemical composition of submicron particles. Organics (sulfates) were predominant for days under continental (marine) influence. Half the organic sources were identified as local, including one due to open waste-burning, and half were linked to regional air masses and enhanced photochemical processes.
África Barreto, Roberto Román, Emilio Cuevas, Alberto J. Berjón, A. Fernando Almansa, Carlos Toledano, Ramiro González, Yballa Hernández, Luc Blarel, Philippe Goloub, Carmen Guirado, and Margarita Yela
Atmos. Meas. Tech., 10, 3007–3019, https://doi.org/10.5194/amt-10-3007-2017, https://doi.org/10.5194/amt-10-3007-2017, 2017
Short summary
Short summary
This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
Marie Boichu, Isabelle Chiapello, Colette Brogniez, Jean-Christophe Péré, Francois Thieuleux, Benjamin Torres, Luc Blarel, Augustin Mortier, Thierry Podvin, Philippe Goloub, Nathalie Söhne, Lieven Clarisse, Sophie Bauduin, François Hendrick, Nicolas Theys, Michel Van Roozendael, and Didier Tanré
Atmos. Chem. Phys., 16, 10831–10845, https://doi.org/10.5194/acp-16-10831-2016, https://doi.org/10.5194/acp-16-10831-2016, 2016
Short summary
Short summary
Bárðarbunga eruption emitted huge amounts of sulfur into the lower troposphere causing an unprecedented air pollution in the modern era. A wealth of remote sensing and in situ data allows us to jointly analyse the dynamics of volcanic SO2 and sulfate aerosols. Based on this panel of observations, success and challenges in simulating such volcanogenic long-range pollution events are exposed, focusing on the boundary layer dynamics.
Valentyn Bovchaliuk, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Didier Tanre, Anatoli Chaikovsky, Oleg Dubovik, Augustin Mortier, Anton Lopatin, Mikhail Korenskiy, and Stephane Victori
Atmos. Meas. Tech., 9, 3391–3405, https://doi.org/10.5194/amt-9-3391-2016, https://doi.org/10.5194/amt-9-3391-2016, 2016
I. Veselovskii, P. Goloub, T. Podvin, V. Bovchaliuk, Y. Derimian, P. Augustin, M. Fourmentin, D. Tanre, M. Korenskiy, D. N. Whiteman, A. Diallo, T. Ndiaye, A. Kolgotin, and O. Dubovik
Atmos. Chem. Phys., 16, 7013–7028, https://doi.org/10.5194/acp-16-7013-2016, https://doi.org/10.5194/acp-16-7013-2016, 2016
Short summary
Short summary
West Africa and the adjacent oceanic regions are very important locations for studying dust properties and their influence on weather and climate. The SHADOW (study of SaHAran Dust Over West Africa) campaign is performing a multiscale and multilaboratory study of aerosol properties and dynamics using a set of in situ and remote sensing instruments at an observation site located at IRD (Institute for Research and Development) in Mbour, Senegal (14° N, 17° W).
M. Mallet, F. Dulac, P. Formenti, P. Nabat, J. Sciare, G. Roberts, J. Pelon, G. Ancellet, D. Tanré, F. Parol, C. Denjean, G. Brogniez, A. di Sarra, L. Alados-Arboledas, J. Arndt, F. Auriol, L. Blarel, T. Bourrianne, P. Chazette, S. Chevaillier, M. Claeys, B. D'Anna, Y. Derimian, K. Desboeufs, T. Di Iorio, J.-F. Doussin, P. Durand, A. Féron, E. Freney, C. Gaimoz, P. Goloub, J. L. Gómez-Amo, M. J. Granados-Muñoz, N. Grand, E. Hamonou, I. Jankowiak, M. Jeannot, J.-F. Léon, M. Maillé, S. Mailler, D. Meloni, L. Menut, G. Momboisse, J. Nicolas, T. Podvin, V. Pont, G. Rea, J.-B. Renard, L. Roblou, K. Schepanski, A. Schwarzenboeck, K. Sellegri, M. Sicard, F. Solmon, S. Somot, B Torres, J. Totems, S. Triquet, N. Verdier, C. Verwaerde, F. Waquet, J. Wenger, and P. Zapf
Atmos. Chem. Phys., 16, 455–504, https://doi.org/10.5194/acp-16-455-2016, https://doi.org/10.5194/acp-16-455-2016, 2016
Short summary
Short summary
The aim of this article is to present an experimental campaign over the Mediterranean focused on aerosol-radiation measurements and modeling. Results indicate an important atmospheric loading associated with a moderate absorbing ability of mineral dust. Observations suggest a complex vertical structure and size distributions characterized by large aerosols within dust plumes. The radiative effect is highly variable, with negative forcing over the Mediterranean and positive over northern Africa.
E. Cuevas, C. Camino, A. Benedetti, S. Basart, E. Terradellas, J. M. Baldasano, J. J. Morcrette, B. Marticorena, P. Goloub, A. Mortier, A. Berjón, Y. Hernández, M. Gil-Ojeda, and M. Schulz
Atmos. Chem. Phys., 15, 3991–4024, https://doi.org/10.5194/acp-15-3991-2015, https://doi.org/10.5194/acp-15-3991-2015, 2015
Short summary
Short summary
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products, AERONET data, in situ PM10 concentrations, and extinction vertical profiles. The MACC-II AOD spatial and temporal variability shows good agreement with satellite sensors and AERONET. We find a good agreement in averaged extinction vertical profiles between MACC-II and lidars. MACC correctly reproduces daily to interannual PM10.
A. Kukui, M. Legrand, S. Preunkert, M. M. Frey, R. Loisil, J. Gil Roca, B. Jourdain, M. D. King, J. L. France, and G. Ancellet
Atmos. Chem. Phys., 14, 12373–12392, https://doi.org/10.5194/acp-14-12373-2014, https://doi.org/10.5194/acp-14-12373-2014, 2014
Short summary
Short summary
Concentrations of OH radicals and the sum of peroxy radicals, RO2, were measured in the boundary layer for the first time on the East Antarctic Plateau at the Concordia Station during the austral summer 2011/2012. The concentrations of radicals were comparable to those observed at the South Pole, confirming that the elevated oxidative capacity of the Antarctic atmospheric boundary layer found at the South Pole is not restricted to the South Pole but common over the high Antarctic plateau.
B. Torres, C. Toledano, A. Berjón, D. Fuertes, V. Molina, R. Gonzalez, M. Canini, V. E. Cachorro, P. Goloub, T. Podvin, L. Blarel, O. Dubovik, Y. Bennouna, and A. M. de Frutos
Atmos. Meas. Tech., 6, 2207–2220, https://doi.org/10.5194/amt-6-2207-2013, https://doi.org/10.5194/amt-6-2207-2013, 2013
A. Mortier, P. Goloub, T. Podvin, C. Deroo, A. Chaikovsky, N. Ajtai, L. Blarel, D. Tanre, and Y. Derimian
Atmos. Chem. Phys., 13, 3705–3720, https://doi.org/10.5194/acp-13-3705-2013, https://doi.org/10.5194/acp-13-3705-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Instruments and Platforms
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products
Shortwave Array Spectroradiometer-Hemispheric (SAS-He): design and evaluation
Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar
Assessment of the spectral misalignment effect (SMILE) on EarthCARE's Multi-Spectral Imager aerosol and cloud property retrievals
The Langley ratio method, a new approach for transferring photometer calibration from direct sun measurements
Multi-star calibration in starphotometry
Continuous observations from horizontally pointing lidar, weather parameters and PM2.5: a pre-deployment assessment for monitoring radioactive dust in Fukushima, Japan
Multiwavelength fluorescence lidar observations of smoke plumes
Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic
Earth observations from the Moon's surface: dependence on lunar libration
Relationship between the sub-micron fraction (SMF) and fine-mode fraction (FMF) in the context of AERONET retrievals
Systematic analysis of virga and its impact on surface particulate matter observations
Spectrometric fluorescence and Raman lidar: absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements
The polarimetric characteristics of dust with irregular shapes: evaluation of the spheroid model for single particles
The eVe reference polarisation lidar system for the calibration and validation of the Aeolus L2A product
Evaluation of aerosol microphysical, optical and radiative properties measured with a multiwavelength photometer
Polarization lidar for detecting dust orientation: system design and calibration
Accuracy in starphotometry
Rethinking the correction for absorbing aerosols in the OMI- and TROPOMI-like surface UV algorithms
Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France
Satellite imagery and products of the 16–17 February 2020 Saharan Air Layer dust event over the eastern Atlantic: impacts of water vapor on dust detection and morphology
Combined use of Mie–Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment
Solar radiometer sensing of multi-year aerosol features over a tropical urban station: direct-Sun and inversion products
An overview of and issues with sky radiometer technology and SKYNET
Scanning polarization lidar LOSA-M3: opportunity for research of crystalline particle orientation in the ice clouds
The polarized Sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing
Nocturnal aerosol optical depth measurements with modified sky radiometer POM-02 using the moon as a light source
Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
The impact of MISR-derived injection height initialization on wildfire and volcanic plume dispersion in the HYSPLIT model
The instrument constant of sky radiometers (POM-02) – Part 1: Calibration constant
The instrument constant of sky radiometers (POM-02) – Part 2: Solid view angle
Remote sensing of aerosols with small satellites in formation flight
A study of the approaches used to retrieve aerosol extinction, as applied to limb observations made by OSIRIS and SCIAMACHY
Increased aerosol content in the atmosphere over Ukraine during summer 2010
Experimental techniques for the calibration of lidar depolarization channels in EARLINET
Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations
Using paraxial approximation to describe the optical setup of a typical EARLINET lidar system
Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes
Aerosol optical depth determination in the UV using a four-channel precision filter radiometer
A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring
Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment
1064 nm rotational Raman lidar for particle extinction and lidar-ratio profiling: cirrus case study
About the effects of polarising optics on lidar signals and the Δ90 calibration
Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers
An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers
Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites
The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation
Profiling the PM2.5 mass concentration vertical distribution in the boundary layer
The Aerosol Limb Imager: acousto-optic imaging of limb-scattered sunlight for stratospheric aerosol profiling
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024, https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
Short summary
ATLID (atmospheric lidar) is the lidar to be flown on the Earth Clouds and Radiation Explorer satellite (EarthCARE). EarthCARE is a joint European–Japanese satellite mission that was launched in May 2024. ATLID is an advanced lidar optimized for cloud and aerosol property profile measurements. This paper describes some of the key novel algorithms being applied to this lidar to retrieve cloud and aerosol properties. Example results based on simulated data are presented and discussed.
Evgueni Kassianov, Connor J. Flynn, James C. Barnard, Brian D. Ermold, and Jennifer M. Comstock
Atmos. Meas. Tech., 17, 4997–5013, https://doi.org/10.5194/amt-17-4997-2024, https://doi.org/10.5194/amt-17-4997-2024, 2024
Short summary
Short summary
Conventional ground-based radiometers commonly measure solar radiation at a few wavelengths within a narrow spectral range. These limitations prevent improved retrievals of aerosol, cloud, and surface characteristics. To address these limitations, an advanced ground-based radiometer with expanded spectral coverage and hyperspectral capability is introduced. Its good performance is demonstrated using reference data collected over three coastal regions with diverse types of aerosols and clouds.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Nicole Docter, Anja Hünerbein, David P. Donovan, Rene Preusker, Jürgen Fischer, Jan Fokke Meirink, Piet Stammes, and Michael Eisinger
Atmos. Meas. Tech., 17, 2507–2519, https://doi.org/10.5194/amt-17-2507-2024, https://doi.org/10.5194/amt-17-2507-2024, 2024
Short summary
Short summary
MSI is the imaging spectrometer on board EarthCARE and will provide across-track information on clouds and aerosol properties. The MSI solar channels exhibit a spectral misalignment effect (SMILE) in the measurements. This paper describes and evaluates how the SMILE will affect the cloud and aerosol retrievals that do not account for it.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Liviu Ivănescu and Norman T. O'Neill
Atmos. Meas. Tech., 16, 6111–6121, https://doi.org/10.5194/amt-16-6111-2023, https://doi.org/10.5194/amt-16-6111-2023, 2023
Short summary
Short summary
The starphotometers' complex infrastructure prohibits calibration campaigns. On-site calibration procedures appear as the only practical solution. A multi-star approach overcomes site-specific sky transparency stability problems. Star selection strategies were proposed for mitigating some sources of errors. Data processing strategies and instrument design improvements appear necessary.
Nofel Lagrosas, Kosuke Okubo, Hitoshi Irie, Yutaka Matsumi, Tomoki Nakayama, Yutaka Sugita, Takashi Okada, and Tatsuo Shiina
Atmos. Meas. Tech., 16, 5937–5951, https://doi.org/10.5194/amt-16-5937-2023, https://doi.org/10.5194/amt-16-5937-2023, 2023
Short summary
Short summary
This work examines the near-ground aerosol–weather relationship from 7-month continuous lidar and weather observations in Chiba, Japan. Optical parameters from lidar data are compared with weather parameters to understand and quantify the aerosol–weather relationship and how these optical parameters are affected by the weather and season. The results provide insights into analyzing optical properties of radioactive aerosols when the lidar system is continuously operated in a radioactive area.
Igor Veselovskii, Nikita Kasianik, Mikhail Korenskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, and Dong Liu
Atmos. Meas. Tech., 16, 2055–2065, https://doi.org/10.5194/amt-16-2055-2023, https://doi.org/10.5194/amt-16-2055-2023, 2023
Short summary
Short summary
A five-channel fluorescence lidar was developed for the study of atmospheric aerosol. The fluorescence spectrum induced by 355 nm laser emission is analyzed in five spectral intervals, namely 438 and 29, 472 and 32, 513 and 29, 560 and 40, and 614 and 54 nm. This lidar system was operated during strong forest fires. Our results demonstrate that, for urban aerosol, the maximal fluorescence backscattering is observed at 472 nm, while for smoke, the spectrum is shifted toward longer wavelengths.
Emily D. Lenhardt, Lan Gao, Jens Redemann, Feng Xu, Sharon P. Burton, Brian Cairns, Ian Chang, Richard A. Ferrare, Chris A. Hostetler, Pablo E. Saide, Calvin Howes, Yohei Shinozuka, Snorre Stamnes, Mary Kacarab, Amie Dobracki, Jenny Wong, Steffen Freitag, and Athanasios Nenes
Atmos. Meas. Tech., 16, 2037–2054, https://doi.org/10.5194/amt-16-2037-2023, https://doi.org/10.5194/amt-16-2037-2023, 2023
Short summary
Short summary
Small atmospheric particles, such as smoke from wildfires or pollutants from human activities, impact cloud properties, and clouds have a strong influence on climate. To better understand the distributions of these particles, we develop relationships to derive their concentrations from remote sensing measurements from an instrument called a lidar. Our method is reliable for smoke particles, and similar steps can be taken to develop relationships for other particle types.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Norman T. O'Neill, Keyvan Ranjbar, Liviu Ivănescu, Thomas F. Eck, Jeffrey S. Reid, David M. Giles, Daniel Pérez-Ramírez, and Jai Prakash Chaubey
Atmos. Meas. Tech., 16, 1103–1120, https://doi.org/10.5194/amt-16-1103-2023, https://doi.org/10.5194/amt-16-1103-2023, 2023
Short summary
Short summary
Aerosols are atmospheric particles that vary in size (radius) from a fraction of a micrometer (µm) to around 20 µm. They tend to be either smaller than 1 µm (like smoke or pollution) or larger than 1 µm (like dust or sea salt). Their optical effect (scattering and absorbing sunlight) can be divided into FM (fine-mode) and CM (coarse-mode) parts using a cutoff radius around 1 µm or a spectral (color) technique. We present and validate a theoretical link between the types of FM and CM divisions.
Nakul N. Karle, Ricardo K. Sakai, Rosa M. Fitzgerald, Charles Ichoku, Fernando Mercado, and William R. Stockwell
Atmos. Meas. Tech., 16, 1073–1085, https://doi.org/10.5194/amt-16-1073-2023, https://doi.org/10.5194/amt-16-1073-2023, 2023
Short summary
Short summary
Extensive virga research is uncommon, even though it is a common phenomenon. A systematic method was developed to characterize virga using available datasets. In total, 50 virga events were observed, appearing only during a specific time of the year, revealing a seasonal pattern. These virga events were identified and classified, and their impact on surface PM measurements was investigated. A more detailed examination of the selected events reveals that virga impacts regional air quality.
Jens Reichardt, Oliver Behrendt, and Felix Lauermann
Atmos. Meas. Tech., 16, 1–13, https://doi.org/10.5194/amt-16-1-2023, https://doi.org/10.5194/amt-16-1-2023, 2023
Short summary
Short summary
The UVA spectrometer is the latest instrumental addition to the spectrometric fluorescence and Raman lidar RAMSES. The redesigned receiver and the data analysis of the fluorescence measurement are described. Furthermore, the effect of aerosol fluorescence on humidity measurements is studied. It turns out that Raman lidars equipped with a spectrometer show superior performance over those with one discrete fluorescence detection channel only. The cause is variability in the fluorescence spectrum.
Jie Luo, Zhengqiang Li, Cheng Fan, Hua Xu, Ying Zhang, Weizhen Hou, Lili Qie, Haoran Gu, Mengyao Zhu, Yinna Li, and Kaitao Li
Atmos. Meas. Tech., 15, 2767–2789, https://doi.org/10.5194/amt-15-2767-2022, https://doi.org/10.5194/amt-15-2767-2022, 2022
Short summary
Short summary
A single model is difficult to represent various shapes of dust. We proposed a tunable model to represent dust with various shapes. Two tunable parameters were used to represent the effects of the erosion degree and binding forces from the mass center. Thus, the model can represent various dust shapes by adjusting the tunable parameters. Besides, the applicability of the spheroid model in calculating the optical properties and polarimetric characteristics is evaluated.
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Alexandra Tsekeri, Vassilis Amiridis, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Spiros Metallinos, George Doxastakis, Josef Gasteiger, Nikolaos Siomos, Peristera Paschou, Thanasis Georgiou, George Tsaknakis, Christos Evangelatos, and Ioannis Binietoglou
Atmos. Meas. Tech., 14, 7453–7474, https://doi.org/10.5194/amt-14-7453-2021, https://doi.org/10.5194/amt-14-7453-2021, 2021
Short summary
Short summary
Dust orientation in the Earth's atmosphere has been an ongoing investigation in recent years, and its potential proof will be a paradigm shift for dust remote sensing. We have designed and developed a polarization lidar that provides direct measurements of dust orientation, as well as more detailed information of the particle microphysics. We provide a description of its design as well as its first measurements.
Liviu Ivănescu, Konstantin Baibakov, Norman T. O'Neill, Jean-Pierre Blanchet, and Karl-Heinz Schulz
Atmos. Meas. Tech., 14, 6561–6599, https://doi.org/10.5194/amt-14-6561-2021, https://doi.org/10.5194/amt-14-6561-2021, 2021
Short summary
Short summary
Starphotometry seeks to provide accurate measures of nocturnal optical depth (OD). It is driven by a need to characterize aerosols and their radiative forcing effects during a very data-sparse period. A sub-0.01 OD error is required to adequately characterize key aerosol parameters. We found approaches for sufficiently mitigating errors to achieve the 0.01 standard. This renders starphotometry the equal of daytime techniques and opens the door to exploiting its distinct star-pointing advantages.
Antti Arola, William Wandji Nyamsi, Antti Lipponen, Stelios Kazadzis, Nickolay A. Krotkov, and Johanna Tamminen
Atmos. Meas. Tech., 14, 4947–4957, https://doi.org/10.5194/amt-14-4947-2021, https://doi.org/10.5194/amt-14-4947-2021, 2021
Short summary
Short summary
Methods to estimate surface UV radiation from satellite measurements offer the only means to obtain global coverage, and the development of satellite-based UV algorithms has been ongoing since the early 1990s. One of the main challenges in this development has been how to account for the overall effect of absorption by atmospheric aerosols. One such method was suggested roughly a decade ago, and in this study we propose further improvements for this kind of approach.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Marie Choël, Nicolas Visez, and Mikhail Korenskiy
Atmos. Meas. Tech., 14, 4773–4786, https://doi.org/10.5194/amt-14-4773-2021, https://doi.org/10.5194/amt-14-4773-2021, 2021
Short summary
Short summary
The multiwavelength Mie–Raman–fluorescence lidar of the University of Lille was used to characterize aerosols during the pollen season in the north of France for the period March–June 2020. The results of observations demonstrate that the presence of pollen grains in aerosol mixtures leads to an increase in the depolarization ratio and to the enhancement of the fluorescence backscattering.
Lewis Grasso, Daniel Bikos, Jorel Torres, John F. Dostalek, Ting-Chi Wu, John Forsythe, Heather Q. Cronk, Curtis J. Seaman, Steven D. Miller, Emily Berndt, Harry G. Weinman, and Kennard B. Kasper
Atmos. Meas. Tech., 14, 1615–1634, https://doi.org/10.5194/amt-14-1615-2021, https://doi.org/10.5194/amt-14-1615-2021, 2021
Short summary
Short summary
This study uses geostationary imagery to detect dust. This research was done to demonstrate the ability of dust detection over ocean surfaces in a dry atmosphere.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Olivier Pujol, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 13, 6691–6701, https://doi.org/10.5194/amt-13-6691-2020, https://doi.org/10.5194/amt-13-6691-2020, 2020
Short summary
Short summary
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers.
Katta Vijayakumar, Panuganti C. S. Devara, Sunil M. Sonbawne, David M. Giles, Brent N. Holben, Sarangam Vijaya Bhaskara Rao, and Chalicheemalapalli K. Jayasankar
Atmos. Meas. Tech., 13, 5569–5593, https://doi.org/10.5194/amt-13-5569-2020, https://doi.org/10.5194/amt-13-5569-2020, 2020
Short summary
Short summary
The direct-Sun and inversion products of urban atmospheric aerosols, obtained from a Cimel Sun–sky radiometer in Pune, India, under the AERONET program since October 2004, have been reported in this paper. The mean seasonal variations in AOD from cloud-free days indicated greater values during the monsoon season, revealing dominance of hygroscopic aerosols over the station. Such results are sparse in India and are important for estimating aerosol radiative forcing and validating climate models.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Grigorii P. Kokhanenko, Yurii S. Balin, Marina G. Klemasheva, Sergei V. Nasonov, Mikhail M. Novoselov, Iogannes E. Penner, and Svetlana V. Samoilova
Atmos. Meas. Tech., 13, 1113–1127, https://doi.org/10.5194/amt-13-1113-2020, https://doi.org/10.5194/amt-13-1113-2020, 2020
Short summary
Short summary
Cirrus clouds consist of crystals (plates, needles) that can orient themselves in space as a result of free fall. This leads to the appearance of various types of optical halo and to specular reflection of solar radiation. The presence of such particles significantly affects the passage of thermal radiation through the mid- and high-level ice clouds. Using the properties of polarization, a scanning lidar makes it possible to identify cloud areas with oriented crystals.
Hans Grob, Claudia Emde, Matthias Wiegner, Meinhard Seefeldner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 13, 239–258, https://doi.org/10.5194/amt-13-239-2020, https://doi.org/10.5194/amt-13-239-2020, 2020
Short summary
Short summary
Polarimetry has been established as an enhancement to classical photometry in aerosol remote sensing over the past years. We propose a fast and exact radiometric and polarimetric calibration method for polarized photometers. Additionally, a technique for correcting an alt-azimuthal mount is introduced.
These methods are applied to measurements obtained with our SSARA instrument during the A-LIFE field campaign. For 2 d, the data are subjected to an inversion of aerosol optical properties.
Akihiro Uchiyama, Masataka Shiobara, Hiroshi Kobayashi, Tsuneo Matsunaga, Akihiro Yamazaki, Kazunori Inei, Kazuhiro Kawai, and Yoshiaki Watanabe
Atmos. Meas. Tech., 12, 6465–6488, https://doi.org/10.5194/amt-12-6465-2019, https://doi.org/10.5194/amt-12-6465-2019, 2019
Short summary
Short summary
The majority of aerosol data are obtained from daytime measurements using the Sun as a light source, and there are few datasets available for studying nighttime aerosol characteristics. To estimate the aerosol optical depth (AOD) during the nighttime using the moon as a light source, a radiometer for the daytime was modified, and a new calibration method was developed. As a result, the estimations of the nighttime AOD were made with the same degree of precision and accuracy during the daytime.
Chong Wang, Mingjiao Jia, Haiyun Xia, Yunbin Wu, Tianwen Wei, Xiang Shang, Chengyun Yang, Xianghui Xue, and Xiankang Dou
Atmos. Meas. Tech., 12, 3303–3315, https://doi.org/10.5194/amt-12-3303-2019, https://doi.org/10.5194/amt-12-3303-2019, 2019
Short summary
Short summary
To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar and coherent Doppler wind lidar is built. Evolution of atmospheric boundary layer height (BLH), aerosol layer and fine structure in cloud base are well retrieved. Negative correlation exists between BLH and PM2.5. Different trends show that the relationship between PM2.5 and BLH should be considered in different boundary layer categories.
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019, https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
Short summary
The future Flexible Combined Imager (FCI) on board MeteoSat Third Generation is expected to improve the detection and the quantification of aerosols. The study assesses the potential of FCI/VIS04 channel for monitoring air pollution in Europe. An observing system simulation experiment in MOCAGE is developed, and they show a large positive impact of the assimilation over a 4-month period and particularly during a severe pollution episode. The added value of geostationary data is also assessed.
Charles J. Vernon, Ryan Bolt, Timothy Canty, and Ralph A. Kahn
Atmos. Meas. Tech., 11, 6289–6307, https://doi.org/10.5194/amt-11-6289-2018, https://doi.org/10.5194/amt-11-6289-2018, 2018
Short summary
Short summary
The height that aerosols are injected into the atmosphere can significantly impact the dispersion of aerosol plumes. We use direct observations from the MISR instrument to determine aerosol injection height and constrain the HYSPLIT Dispersion model with these data. We have shown that the nominal plume-rise calculation within HYSPLIT tends to underestimate injection heights of wildfires and that simulations constrained with MISR injection height can show better agreement with MODIS observations.
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5363–5388, https://doi.org/10.5194/amt-11-5363-2018, https://doi.org/10.5194/amt-11-5363-2018, 2018
Short summary
Short summary
Atmospheric aerosols are an important constituent of the atmosphere. Measurement networks using radiometers such as SKYNET have been developed. There are two constants that we must determine to make accurate measurements. One of them is the calibration constant. The accuracy of the current method to determine this was investigated and the new method for water vapor and near-infrared channels was developed. Utilizing the results of this paper, SKYNET measurement data will become more reliable.
Akihiro Uchiyama, Tsuneo Matsunaga, and Akihiro Yamazaki
Atmos. Meas. Tech., 11, 5389–5402, https://doi.org/10.5194/amt-11-5389-2018, https://doi.org/10.5194/amt-11-5389-2018, 2018
Short summary
Short summary
Atmospheric aerosols are an important constituent of the atmosphere. Measurement networks using radiometers such as SKYNET have been developed. There are two constants that we must determine. One of them is the solid view angle (SVA) of the radiometer. The problems related to SVA were investigated. It was shown that the conventional method can cause a systematic underestimation, and an improved method was proposed. Utilizing the results of this paper, SKYNET data will become more reliable.
Kirk Knobelspiesse and Sreeja Nag
Atmos. Meas. Tech., 11, 3935–3954, https://doi.org/10.5194/amt-11-3935-2018, https://doi.org/10.5194/amt-11-3935-2018, 2018
Short summary
Short summary
We test if small satellites flying in formation can be used for multi-angle aerosol remote sensing. So far, this has only been done with multiple views on one satellite. Single-view angle satellites flying in formation are a technically feasible alternative, although with different geometries. Using Bayesian information content analysis, we find such satellites equally capable. For aerosol remote sensing, the number of viewing angles is the most important.
Landon A. Rieger, Elizaveta P. Malinina, Alexei V. Rozanov, John P. Burrows, Adam E. Bourassa, and Doug A. Degenstein
Atmos. Meas. Tech., 11, 3433–3445, https://doi.org/10.5194/amt-11-3433-2018, https://doi.org/10.5194/amt-11-3433-2018, 2018
Short summary
Short summary
This paper compares aerosol extinction records from two limb scattering instruments, OSIRIS and SCIAMACHY, to that from the occultation instrument SAGE II. Differences are investigated through modelling and retrieval studies and important sources of systematic errors are quantified. It is found that the largest biases come from uncertainties in the aerosol size distribution and the aerosol particle concentration at altitudes above 30 km.
Evgenia Galytska, Vassyl Danylevsky, René Hommel, and John P. Burrows
Atmos. Meas. Tech., 11, 2101–2118, https://doi.org/10.5194/amt-11-2101-2018, https://doi.org/10.5194/amt-11-2101-2018, 2018
Short summary
Short summary
This research assesses the influence of biomass burning during forest fires throughout summer 2010 on aerosol load over Ukraine, the European territory of Russia (ETR) and Eastern Europe. We apply and compare ground-based and satellite measurements to determine aerosol content, dynamics, and properties. With the application of modeling techniques (HYSPLIT), we show that the maximum AOD in August 2010 over Ukraine was caused by particle transport from the forest fires in the ETR.
Livio Belegante, Juan Antonio Bravo-Aranda, Volker Freudenthaler, Doina Nicolae, Anca Nemuc, Dragos Ene, Lucas Alados-Arboledas, Aldo Amodeo, Gelsomina Pappalardo, Giuseppe D'Amico, Francesco Amato, Ronny Engelmann, Holger Baars, Ulla Wandinger, Alexandros Papayannis, Panos Kokkalis, and Sérgio N. Pereira
Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, https://doi.org/10.5194/amt-11-1119-2018, 2018
Short summary
Short summary
This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected EARLINET lidar instruments. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is accepted in the literature. The depolarization accuracy estimate at 532 nm is better than ±0.03 for all cases.
Igor V. Geogdzhayev and Alexander Marshak
Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, https://doi.org/10.5194/amt-11-359-2018, 2018
Short summary
Short summary
The unique Earth view of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) orbiting at the point of equal attraction from the Earth and the Sun can significantly augment the low-orbit remote sensing of aerosols, clouds and gases. We derive the relationship between the digital counts and the reflected sunlight intensity for some EPIC channels using collocated Earth views from EPIC and Moderate Resolution Imaging Spectroradiometer (MODIS) and EPIC moon views.
Panagiotis Kokkalis
Atmos. Meas. Tech., 10, 3103–3115, https://doi.org/10.5194/amt-10-3103-2017, https://doi.org/10.5194/amt-10-3103-2017, 2017
Short summary
Short summary
The mathematical formulation for the optical setup of a typical EARLINET lidar system is given here. The equations describing a lidar system from the emitted laser beam to the projection of the telescope aperture on the final receiving unit (i.e., photomultiplier or photodiode) are presented, based on paraxial approximation and a geometric optics approach. The evaluation of the formulation is performed with ray-tracing simulations on a real system.
Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Robert E. Holz, Jaehwa Lee, Greg Quinn, and Paolo Veglio
Atmos. Meas. Tech., 10, 1425–1444, https://doi.org/10.5194/amt-10-1425-2017, https://doi.org/10.5194/amt-10-1425-2017, 2017
Short summary
Short summary
The satellite instrument VIIRS is being used to carry on observations of the Earth made by older satellites like MODIS. Data sets created from these satellite observations depend on the quality of the satellite instruments' calibration. This paper describes a comparison between the calibration of these two sensors. MODIS is believed to be more reliable and so VIIRS is corrected to bring it in line with MODIS. These corrections are shown to improve the quality of VIIRS aerosol data.
Thomas Carlund, Natalia Kouremeti, Stelios Kazadzis, and Julian Gröbner
Atmos. Meas. Tech., 10, 905–923, https://doi.org/10.5194/amt-10-905-2017, https://doi.org/10.5194/amt-10-905-2017, 2017
Short summary
Short summary
Aerosols play an important role in atmospheric processes. Aerosol optical depth is the most common measure of columnar aerosol load. We present a sunphotometer called UVPFR that is able to measure aerosol optical depth in the ultraviolet range, including the calibration, characterization and validation of the instrument/measurements. The instrument will serve as a reference on the intercalibration of Brewer spectrophotometers that are also able to measure aerosol optical depth in the UV region.
A. Fernando Almansa, Emilio Cuevas, Benjamín Torres, África Barreto, Rosa D. García, Victoria E. Cachorro, Ángel M. de Frutos, César López, and Ramón Ramos
Atmos. Meas. Tech., 10, 565–579, https://doi.org/10.5194/amt-10-565-2017, https://doi.org/10.5194/amt-10-565-2017, 2017
Short summary
Short summary
This study presents a new zenith-looking narrow-band radiometer-based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring. The ZEN system comprises a robust and automated radiometer (ZEN-R41), and a lookup table methodology for AOD retrieval (ZEN-LUT). Our results suggest that ZEN is a suitable system to fill the current observational gaps and to complement observations performed by sun-photometer networks in order to improve mineral dust monitoring in remote locations.
Stelios Kazadzis, Panagiotis Raptis, Natalia Kouremeti, Vassilis Amiridis, Antti Arola, Evangelos Gerasopoulos, and Gregory L. Schuster
Atmos. Meas. Tech., 9, 5997–6011, https://doi.org/10.5194/amt-9-5997-2016, https://doi.org/10.5194/amt-9-5997-2016, 2016
Short summary
Short summary
Aerosols play an important role in the Earth's climate. One of the main aerosol properties is the single scattering albedo which is a measure of the aerosol absorption. In this work we have presented a method to retrieve this aerosol property in the ultraviolet and we presented the results for measurements at the urban environment of Athens, Greece. We show that the spectral dependence of the aerosol absorption in the VIS–IR and the UV range depends on the aerosol composition and type.
Moritz Haarig, Ronny Engelmann, Albert Ansmann, Igor Veselovskii, David N. Whiteman, and Dietrich Althausen
Atmos. Meas. Tech., 9, 4269–4278, https://doi.org/10.5194/amt-9-4269-2016, https://doi.org/10.5194/amt-9-4269-2016, 2016
Volker Freudenthaler
Atmos. Meas. Tech., 9, 4181–4255, https://doi.org/10.5194/amt-9-4181-2016, https://doi.org/10.5194/amt-9-4181-2016, 2016
Simone Kotthaus, Ewan O'Connor, Christoph Münkel, Cristina Charlton-Perez, Martial Haeffelin, Andrew M. Gabey, and C. Sue B. Grimmond
Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, https://doi.org/10.5194/amt-9-3769-2016, 2016
Short summary
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.
Maxime Hervo, Yann Poltera, and Alexander Haefele
Atmos. Meas. Tech., 9, 2947–2959, https://doi.org/10.5194/amt-9-2947-2016, https://doi.org/10.5194/amt-9-2947-2016, 2016
Short summary
Short summary
Imperfections in a lidar's overlap function lead to artefacts in the lidar (Light Detection and Ranging) signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. In this study an algorithm is presented to correct such artefacts.
The algorithm is completely automatic and does not require any intervention on site. It is therefore suited for use in large automatic lidar networks.
Aaron R. Naeger, Pawan Gupta, Bradley T. Zavodsky, and Kevin M. McGrath
Atmos. Meas. Tech., 9, 2463–2482, https://doi.org/10.5194/amt-9-2463-2016, https://doi.org/10.5194/amt-9-2463-2016, 2016
Short summary
Short summary
In this study, we merge aerosol information from multiple satellite sensors on board low-earth orbiting (LEO) and geostationary (GEO) platforms in order to provide a more comprehensive understanding of the spatial distribution of aerosols compared to when only using single sensors as is commonly done. Our results show that merging aerosol information from LEO and GEO platforms can be very useful, which paves the way for applications to the more advanced next-generation of satellites.
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Zongming Tao, Zhenzhu Wang, Shijun Yang, Huihui Shan, Xiaomin Ma, Hui Zhang, Sugui Zhao, Dong Liu, Chenbo Xie, and Yingjian Wang
Atmos. Meas. Tech., 9, 1369–1376, https://doi.org/10.5194/amt-9-1369-2016, https://doi.org/10.5194/amt-9-1369-2016, 2016
Short summary
Short summary
A new measurement technology of PM2.5 mass concentration profile near ground is addressed using a CCD side-scatter lidar and a PM2.5 detector.
The PM2.5 mass concentration profile can be built upon the vertical distribution of the extinction coefficient for aerosol. The PM2.5 is always loading in the planet boundary layer with a complex muti-layer structure. The new method for PM2.5 mass concentration profile is useful for improving our understanding of air quality and atmospheric environment.
B. J. Elash, A. E. Bourassa, P. R. Loewen, N. D. Lloyd, and D. A. Degenstein
Atmos. Meas. Tech., 9, 1261–1277, https://doi.org/10.5194/amt-9-1261-2016, https://doi.org/10.5194/amt-9-1261-2016, 2016
Cited articles
Ackermann, J.: The extinction-to-backscatter ratio of tropospheric aerosol: A
numerical study, J. Atmos. Ocean. Tech., 15, 1043–1050,
https://doi.org/10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2,
1998.
Ansmann, A., Wagner, F., Althausen, D., Müller, D., Herber, A., and
Wandinger, U.: European pollution outbreaks during ACE 2: Lofted aerosol
plumes observed with Raman lidar at the Portuguese coast, J. Geophys. Res.-Atmos., 106, 20725–20733, https://doi.org/10.1029/2000JD000091, 2001.
Berkhout, A. J. C., Hoff, G. R., and Van Der Gast, L. F. L.: Lidar
Measurements of Industrial Benzene Emissions, edited by: Gross, B., Moshary,
F.,
and Arend, M., EPJ Web Conf., 119, 26005, https://doi.org/10.1051/epjconf/201611926005,
2016.
Berkoff, T. A., Welton, E. J., Campbell, J. R., Scott, V. S., and Spinhirine,
J. D.: Investigation of overlap correction techniques for the micro-pulse
lidar network (MPLNET), IGARSS 2003, IEEE Int. Geosci. Remote Sens. Symp.,
1, 4395–4397, https://doi.org/10.1109/IGARSS.2003.1295527, 2003.
Bovchaliuk, V., Goloub, P., Podvin, T., Veselovskii, I., Tanre, D., Chaikovsky, A., Dubovik, O., Mortier, A., Lopatin, A., Korenskiy, M.,
and Victori, S.: Comparison of aerosol properties retrieved using GARRLiC, LIRIC, and Raman algorithms applied to
multi-wavelength lidar and sun/sky-photometer data, Atmos. Meas. Tech., 9, 3391–3405, https://doi.org/10.5194/amt-9-3391-2016, 2016.
Boyouk, N., Léon, J. F., Delbarre, H., Augustin, P., and Fourmentin, M.:
Impact of sea breeze on vertical structure of aerosol optical properties in
Dunkerque, France, Atmos. Res., 101, 902–910,
https://doi.org/10.1016/j.atmosres.2011.05.016, 2011.
Bravo-Aranda, J. A., Belegante, L., Freudenthaler, V., Alados-Arboledas, L., Nicolae, D., Granados-Muñoz, M. J., Guerrero-Rascado, J. L.,
Amodeo, A., D'Amico, G., Engelmann, R., Pappalardo, G., Kokkalis, P., Mamouri, R., Papayannis, A., Navas-Guzmán, F., Olmo, F. J.,
Wandinger, U., Amato, F., and Haeffelin, M.: Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator,
Atmos. Meas. Tech., 9, 4935–4953, https://doi.org/10.5194/amt-9-4935-2016, 2016.
Bukowiecki, N., Dommen, J., Prévôt, A. S. H., Richter, R.,
Weingartner, E., and Baltensperger, U.: A mobile pollutant measurement
laboratory – Measuring gas phase and aerosol ambient concentrations with high
spatial and temporal resolution, Atmos. Environ., 36, 5569–5579,
https://doi.org/10.1016/S1352-2310(02)00694-5, 2002.
Bush, S. E., Hopkins, F. M., Randerson, J. T., Lai, C.-T., and Ehleringer, J. R.: Design and application of a mobile
ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species,
Atmos. Meas. Tech., 8, 3481–3492, https://doi.org/10.5194/amt-8-3481-2015, 2015.
Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D.,
Spinhirne, J. D., Stanley, S., and Hwang, I. H.: Full-time, eye-safe cloud and
aerosol lidar observation at atmospheric radiation measurement program sites:
Instruments and data processing, J. Atmos. Ocean. Tech., 19, 431–442,
https://doi.org/10.1175/1520-0426(2002)019<0431:FTESCA>2.0.CO;2,
2002.
Chazette, P.: The monsoon aerosol extinction properties at Goa during INDOEX
as measured with lidar, J. Geophys. Res., 108, 4187,
https://doi.org/10.1029/2002JD002074, 2003.
Chazette, P., David, C., Lefrere, J., Godin, S., Pelon, J., and Mégie, G.:
Comparative lidar study of the optical, geometrical, and dynamical properties
of stratospheric post-volcanic aerosols, following the eruptions of El
Chichon and Mount Pinatubo, J. Geophys. Res., 100, 23195–23207,
https://doi.org/10.1029/95JD02268, 1995.
Chazette, P., Marnas, F., and Totems, J.: The mobile Water vapor Aerosol Raman LIdar and its implication in the
framework of the HyMeX and ChArMEx programs: application to a dust transport process, Atmos. Meas. Tech., 7,
1629–1647, https://doi.org/10.5194/amt-7-1629-2014, 2014.
Cheng, Y.-H. and Lin, Y.-L.: Measurement of Particle Mass Concentrations and
Size Distributions in an Underground Station, Aerosol Air Qual. Res., 10,
22–29, https://doi.org/10.4209/aaqr.2009.05.0037, 2010.
Chiang, C.-W., Das, S. K., Chiang, H.-W., Nee, J.-B., Sun, S.-H., Chen, S.-W., Lin, P.-H., Chu, J.-C., Su, C.-S., and Su, L.-S.:
A new mobile and portable scanning lidar for profiling the lower troposphere,
Geosci. Instrum. Method. Data Syst., 4, 35–44, https://doi.org/10.5194/gi-4-35-2015, 2015.
Dieudonné, E., Chazette, P., Marnas, F., Totems, J., and Shang, X.: Lidar profiling of aerosol optical properties
from Paris to Lake Baikal (Siberia), Atmos. Chem. Phys., 15, 5007–5026, https://doi.org/10.5194/acp-15-5007-2015, 2015.
Dou, X., Han, Y., Sun, D., Xia, H., Shu, Z., Zhao, R., Shangguan, M., and Guo,
J.: Mobile Rayleigh Doppler lidar for wind and temperature measurements in
the stratosphere and lower mesosphere, Opt. Exp., 22, A1203,
https://doi.org/10.1364/OE.22.0A1203, 2014.
Drewnick, F., Böttger, T., von der Weiden-Reinmüller, S.-L., Zorn, S. R., Klimach, T., Schneider, J., and Borrmann, S.:
Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field
measurements, Atmos. Meas. Tech., 5, 1443–1457, https://doi.org/10.5194/amt-5-1443-2012, 2012.
Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F.,
Torres, B., Derimian, Y., Huang, X., Lopatin, A., Chaikovsky, A.,
Aspetsberger, M., and Federspiel, C.: GRASP: a versatile algorithm for
characterizing the atmosphere, SPIE Newsroom, 2–5,
https://doi.org/10.1117/2.1201408.005558, 2014.
Fernald, F. G.: Analysis of atmospheric lidar observations: some comments,
Appl. Opt., 23, 5, https://doi.org/10.1364/AO.23.000652, 1984.
Freudenthaler, V., Matthias, V., Amodeo, A., Balis, D., Calpini, B.,
Chourdakis, G., Comeron, A., Delaval, A., De Tomasi, F., Eixmann, R.,
Komguem, L., Kreipl, S., Matthey, R., Mattis, I., Rizi, V., Rodriguez, J., Wang, X., Wiegner, M., and Bösenberg, J.: Intercomparison of 21 aerosol lidar systems in the
frame of EARLINET, in: Lidar Remote Sensing in Atmosphere and Earth Sciences,
proceedings of the XXI International Laser Radar Conference, Quebec, Canada,
8–12, available at:
https://www.meteo.physik.uni-muenchen.de/~st212fre/ILRC21/freudenthaler_et_al_rev3.PDF (last access: 6 March 2018), 2002.
Freudenthaler, V., Linné, H., Chaikovski, A., Rabus, D., and Groß, S.: EARLINET lidar quality assurance tools,
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-395, in review, 2018.
Grimm, H. and Eatough, D. J.: Aerosol measurement: The use of optical light
scattering for the determination of particulate size distribution, and
particulate mass, including the semi-volatile fraction, J. Air Waste Manage., 59, 101–107, https://doi.org/10.3155/1047-3289.59.1.101, 2009.
Haeffelin, M., Barthès, L., Bock, O., Boitel, C., Bony, S., Chepfer, H.,
Chiriaco, M., Cuesta, J., Delanoë, J., Haeffelin, M., Barthès, L.,
Bock, O., Boitel, C., Bony, S., Haeffelin, M., and Barth, L.: SIRTA, a
ground-based atmospheric observatory for cloud and aerosol research, hal-00329353, Annales Geophysicae SIRTA, 2005.
He, Q. S., Li, C. C., Mao, J. T., Lau, A. K. H., and Li, P. R.: A study on the aerosol extinction-to-backscatter ratio with
combination of micro-pulse LIDAR and MODIS over Hong Kong, Atmos. Chem. Phys., 6, 3243–3256, https://doi.org/10.5194/acp-6-3243-2006, 2006.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ.,
66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hussein, T., Boor, B. E., dos Santos, V. N., Kangasluoma, J., Petäjä,
T., and Lihavainen, H.: Mobile aerosol measurement in the Eastern
Mediterranean – A utilization of portable instruments, Aerosol Air Qual.
Res., 17, 1875–1886, https://doi.org/10.4209/aaqr.2016.11.0479, 2017.
Karol, Y., Tanré, D., Goloub, P., Vervaerde, C., Balois, J. Y., Blarel, L., Podvin, T., Mortier, A., and Chaikovsky, A.:
Airborne sun photometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar,
Atmos. Meas. Tech., 6, 2383–2389, https://doi.org/10.5194/amt-6-2383-2013, 2013.
Khaykin, S. M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F.,
and Keckhut, P.: Stratospheric Smoke With Unprecedentedly High Backscatter
Observed by Lidars Above Southern France, Geophys. Res. Lett., 45,
1639–1646, https://doi.org/10.1002/2017GL076763, 2018.
Klett, J. D.: Stable analytical inversion solution for processing lidar
returns, Appl. Opt., 20, 211–220, https://doi.org/10.1364/AO.20.000211,
1981.
Kunz, G. J. and de Leeuw, G.: Inversion of lidar signals with the slope
method, Appl. Opt., 32, 3249–3256, https://doi.org/10.1364/AO.32.003249, 1993.
Léon, J.-F., Derimian, Y., Chiapello, I., Tanrè, D., Podvin, T., Chatenet, B., Diallo, A., and Deroo, C.:
Aerosol vertical distribution and optical properties over M'Bour (16.96∘ W; 14.39∘ N), Senegal from 2006 to 2008,
Atmos. Chem. Phys., 9, 9249–9261, https://doi.org/10.5194/acp-9-9249-2009, 2009.
Levin, E. J. T., Kreidenweis, S. M., McMeeking, G. R., Carrico, C. M.,
Collett, J. L., and Malm, W. C.: Aerosol physical, chemical and optical
properties during the Rocky Mountain Airborne Nitrogen and Sulfur study,
Atmos. Environ., 43, 1932–1939, https://doi.org/10.1016/j.atmosenv.2008.12.042,
2009.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6
MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Lewandowski, P. A., Eichinger, W. E., Holder, H., Prueger, J., Wang, J., and Kleinman, L. I.: Vertical distribution of
aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign, Atmos. Chem. Phys., 10, 1017–1030, https://doi.org/10.5194/acp-10-1017-2010, 2010.
Lopatin, A., Dubovik, O., Chaikovsky, A., Goloub, P., Lapyonok, T., Tanré, D., and Litvinov, P.: Enhancement of aerosol characterization
using synergy of lidar and sun-photometer coincident observations: the GARRLiC algorithm, Atmos. Meas. Tech., 6, 2065–2088,
https://doi.org/10.5194/amt-6-2065-2013, 2013.
Marchant, C. C.: Aglite lidar: a portable elastic lidar system for
investigating aerosol and wind motions at or around agricultural production
facilities, J. Appl. Remote Sens., 3, 033511,
https://doi.org/10.1117/1.3097928, 2009.
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S.,
Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.: CHIMERE 2013: a model for regional
atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013.
Mortier, A.: Aerosol Spatial Distribution During DRAGON Experiment As Seen by
a Mobile Ground-Based LiDAR-Sunphotometer System – Preliminary Results, Conference paper
ILRC,
available at:
https://www.researchgate.net/publication/273136571
(last access: 8 August 2018),
2012.
Mortier, A.: Tendances et variabilites de l'aerosol atmospherique a l'aide du
couplage Lidar/Photometre sur les sites de Lille et Dakar, University of
Lille, 2013.
Mortier, A., Goloub, P., Podvin, T., Deroo, C., Chaikovsky, A., Ajtai, N., Blarel, L., Tanre, D., and Derimian, Y.: Detection and
characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption, Atmos. Chem. Phys., 13, 3705–3720,
https://doi.org/10.5194/acp-13-3705-2013, 2013.
Mortier, A., Goloub, P., Derimian, Y., Tanré, D., Podvin, T., Blarel, L.,
Deroo, C., Marticorena, B., Diallo, A., and Ndiaye, T.: Climatology of aerosol
properties and clear-sky shortwave radiative effects using lidar and sun
photometer observations in the Dakar site, J. Geophys. Res., 121,
6489–6510, https://doi.org/10.1002/2015JD024588, 2016.
Niemi, J. V., Saarikoski, S., Tervahattu, H., Mäkelä, T., Hillamo, R., Vehkamäki, H., Sogacheva, L., and Kulmala, M.: Changes in
background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis,
Atmos. Chem. Phys., 6, 5049–5066, https://doi.org/10.5194/acp-6-5049-2006, 2006.
Pal, S., Xueref-Remy, I., Ammoura, L., Chazette, P., Gibert, F., Royer, P.,
Dieudonné, E., Dupont, J. C., Haeffelin, M., Lac, C., Lopez, M., Morille,
Y., and Ravetta, F.: Spatio-temporal variability of the atmospheric boundary
layer depth over the Paris agglomeration: An assessment of the impact of the
urban heat island intensity, Atmos. Environ., 63, 261–275,
https://doi.org/10.1016/j.atmosenv.2012.09.046, 2012.
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G.,
Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an
advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014.
Pelon, J., Mallet, M., Mariscal, A., Goloub, P., Tanré, D., Bou Karam,
D., Flamant, C., Haywood, J., Pospichal, B., and Victori, S.: Microlidar
observations of biomass burning aerosol over Djougou (Benin) during African
Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and
Biomass-Burning Experiment, J. Geophys. Res., 113, D00C18,
https://doi.org/10.1029/2008JD009976, 2008.
Raut, J.-C. and Chazette, P.: Assessment of vertically-resolved PM10 from mobile lidar observations,
Atmos. Chem. Phys., 9, 8617–8638, https://doi.org/10.5194/acp-9-8617-2009,
2009.
Raut, J.-C., Chazette, P., Haywood, J., and Royer, P.: Lidar observations by
circling the London orbital motorway, AGU Fall Meeting,
available at: https://www.researchgate.net/publication/253096419_Lidar_observations_by_circling_the_London_orbital_motorway
(last access: 8 August 2018), 2009.
Royer, P., Chazette, P., Sartelet, K., Zhang, Q. J., Beekmann, M., and Raut, J.-C.: Comparison of lidar-derived PM10 with
regional modeling and ground-based observations in the frame of MEGAPOLI experiment, Atmos. Chem. Phys., 11, 10705–10726, https://doi.org/10.5194/acp-11-10705-2011, 2011.
Skupin, A., Ansmann, A., Engelmann, R., Seifert, P., and Müller, T.: Four-year long-path monitoring of ambient aerosol extinction at
a central European urban site: dependence on relative humidity, Atmos. Chem. Phys., 16, 1863–1876, https://doi.org/10.5194/acp-16-1863-2016, 2016.
Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.:
Cloud-screening and quality control algorithms for the AERONET database,
Remote Sens. Environ., 73, 337–349,
https://doi.org/10.1016/S0034-4257(00)00109-7, 2000.
Smirnov, A., Holben, B. N., Slutsker, I., Giles, D. M., McClain, C. R., Eck,
T. F., Sakerin, S. M., Macke, A., Croot, P., Zibordi, G., Quinn, P. K.,
Sciare, J., Kinne, S., Harvcy, M., Smyth, T. J., Piketh, S., Zielinski, T.,
Proshutinsky, A., Goes, J. I., Nelson, N. B., Larouche, P., Radionov, V. F.,
Goloub, P., Krishna Moorthy, K., Matarrese, R., Robertson, E. J., and Jourdin,
F.: Maritime Aerosol Network as a component of Aerosol Robotic Network, J. Geophys. Res.-Atmos., 114, 1–10, https://doi.org/10.1029/2008JD011257, 2009.
Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling,
A., Mcfiggans, G., Mcmurry, P. H., Petäjä, T., Tunved, P., Gysel, M.,
Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler,
A., and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric
aerosol particles measured with H-TDMA instruments in various environments –
A review, Tellus B, 60, 432–469,
https://doi.org/10.1111/j.1600-0889.2008.00350.x, 2008.
Torres, B., Dubovik, O., Fuertes, D., Schuster, G., Cachorro, V. E., Lapyonok, T., Goloub, P., Blarel, L., Barreto, A.,
Mallet, M., Toledano, C., and Tanré, D.: Advanced characterisation of aerosol size properties from measurements of spectral
optical depth using the GRASP algorithm, Atmos. Meas. Tech., 10, 3743–3781, https://doi.org/10.5194/amt-10-3743-2017, 2017.
Unga, F.: Investigation of atmospheric aerosol mixing state effect on
measured and retrieved optical characteristics?: an approach integrating
individual particle analysis, remote sensing and numerical simulations,
University of Lille, 2017.
Veselovskii, I., Goloub, P., Podvin, T., Bovchaliuk, V., Derimian, Y., Augustin, P., Fourmentin, M., Tanre, D., Korenskiy, M.,
Whiteman, D. N., Diallo, A., Ndiaye, T., Kolgotin, A., and Dubovik, O.: Retrieval of optical and physical properties of African
dust from multiwavelength Raman lidar measurements during the SHADOW campaign in Senegal, Atmos. Chem. Phys., 16, 7013–7028, https://doi.org/10.5194/acp-16-7013-2016, 2016.
Wagner, T., Ibrahim, O., Shaiganfar, R., and Platt, U.: Mobile MAX-DOAS observations of tropospheric trace gases,
Atmos. Meas. Tech., 3, 129–140, https://doi.org/10.5194/amt-3-129-2010, 2010.
Wang, W., Mao, F., Pan, Z., Du, L., and Gong, W.: Validation of VIIRS AOD
through a comparison with a sun photometer and MODIS AODs over Wuhan, Remote
Sens., 9, 403, https://doi.org/10.3390/rs9050403, 2017.
Weber, K., Eliasson, J., Vogel, A., Fischer, C., Pohl, T., van Haren, G.,
Meier, M., Grobéty, B., and Dahmann, D.: Airborne in-situ investigations
of the Eyjafjallajökull volcanic ash plume on iceland and over
north-western Germany with light aircrafts and optical particle counters,
Atmos. Environ., 48, 9–21, https://doi.org/10.1016/j.atmosenv.2011.10.030, 2012.
Weijers, E. P., Khlystov, A. Y., Kos, G. P. A., and Erisman, J. W.:
Variability of particulate matter concentrations along roads and motorways
determined by a moving measurement unit, Atmos. Environ., 38, 2993–3002,
https://doi.org/10.1016/j.atmosenv.2004.02.045, 2004.
Weimer, S., Mohr, C., Richter, R., Keller, J., Mohr, M., Prévôt, A. S.
H.,
and Baltensperger, U.: Mobile measurements of aerosol number and volume size
distributions in an Alpine valley: Influence of traffic versus wood burning,
Atmos. Environ., 43, 624–630, https://doi.org/10.1016/j.atmosenv.2008.10.034,
2009.
Welton, E. J. and Campbell, J. R.: Micropulse lidar signals: Uncertainty
analysis, J. Atmos. Ocean. Tech., 19, 2089–2094,
https://doi.org/10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2,
2002.
Welton, E. J., Campbell, J. R., Berkoff, T. A., Valencia, S., Spinhirne, J.
D., Holben, B., Tsay, S.-C., and Schmid, B.: The NASA Micro-Pulse Lidar
Network (MPLNET): an overview and recent results MPLNET, Red de lidares
Micro-pulso de la NASA: Descripción general y resultados recientes, 39
pp.,
available at:
https://pdfs.semanticscholar.org/845d/87d5bffa1c87de2eacfc361e6a613950c3b0.pdf
(last access: 5 March 2018), 2005.
Wu, F. C., Xie, P. H., Li, A., Chan, K. L., Hartl, A., Wang, Y., Si, F. Q., Zeng, Y., Qin, M., Xu, J., Liu, J. G., Liu, W. Q., and
Wenig, M.: Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010,
Atmos. Meas. Tech., 6, 2277–2292, https://doi.org/10.5194/amt-6-2277-2013, 2013.
Short summary
This paper aims to show the potential of an instrumented mobile platform, performing on-road remote sensing and in situ measurements, to derive aerosol properties. It is distinguished from other transportable platforms through its ability to perform measurements during movement. Its reduced size, versatility and great flexibility makes it suitable for following sudden aerosol events and for validating satellite measurements and model simulations.
This paper aims to show the potential of an instrumented mobile platform, performing on-road...