Articles | Volume 11, issue 8
https://doi.org/10.5194/amt-11-4797-2018
https://doi.org/10.5194/amt-11-4797-2018
Research article
 | 
16 Aug 2018
Research article |  | 16 Aug 2018

Portable ozone calibration source independent of changes in temperature, pressure and humidity for research and regulatory applications

John W. Birks, Craig J. Williford, Peter C. Andersen, Andrew A. Turnipseed, Stanley Strunk, and Christine A. Ennis

Related authors

Portable calibrator for NO based on the photolysis of N2O and a combined NO2∕NO∕O3 source for field calibrations of air pollution monitors
John W. Birks, Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Stanley Strunk, Brian Carpenter, and Christine A. Ennis
Atmos. Meas. Tech., 13, 1001–1018, https://doi.org/10.5194/amt-13-1001-2020,https://doi.org/10.5194/amt-13-1001-2020, 2020
Short summary
Folded tubular photometer for atmospheric measurements of NO2 and NO
John W. Birks, Peter C. Andersen, Craig J. Williford, Andrew A. Turnipseed, Stanley E. Strunk, Christine A. Ennis, and Erick Mattson
Atmos. Meas. Tech., 11, 2821–2835, https://doi.org/10.5194/amt-11-2821-2018,https://doi.org/10.5194/amt-11-2821-2018, 2018
Short summary
Use of a heated graphite scrubber as a means of reducing interferences in UV-absorbance measurements of atmospheric ozone
Andrew A. Turnipseed, Peter C. Andersen, Craig J. Williford, Christine A. Ennis, and John W. Birks
Atmos. Meas. Tech., 10, 2253–2269, https://doi.org/10.5194/amt-10-2253-2017,https://doi.org/10.5194/amt-10-2253-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Drone CO2 measurements during the Tajogaite volcanic eruption
John Ericksen, Tobias P. Fischer, G. Matthew Fricke, Scott Nowicki, Nemesio M. Pérez, Pedro Hernández Pérez, Eleazar Padrón González, and Melanie E. Moses
Atmos. Meas. Tech., 17, 4725–4736, https://doi.org/10.5194/amt-17-4725-2024,https://doi.org/10.5194/amt-17-4725-2024, 2024
Short summary
Multi-decadal atmospheric carbon dioxide measurements in Hungary, central Europe
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024,https://doi.org/10.5194/amt-17-4629-2024, 2024
Short summary
Reliable water vapour isotopic composition measurements at low humidity using frequency-stabilised cavity ring-down spectroscopy
Mathieu Casado, Amaelle Landais, Tim Stoltmann, Justin Chaillot, Mathieu Daëron, Fréderic Prié, Baptiste Bordet, and Samir Kassi
Atmos. Meas. Tech., 17, 4599–4612, https://doi.org/10.5194/amt-17-4599-2024,https://doi.org/10.5194/amt-17-4599-2024, 2024
Short summary
A measurement system for CO2 and CH4 emissions quantification of industrial sites using a new in situ concentration sensor operated on board uncrewed aircraft vehicles
Jean-Louis Bonne, Ludovic Donnat, Grégory Albora, Jérémie Burgalat, Nicolas Chauvin, Delphine Combaz, Julien Cousin, Thomas Decarpenterie, Olivier Duclaux, Nicolas Dumelié, Nicolas Galas, Catherine Juery, Florian Parent, Florent Pineau, Abel Maunoury, Olivier Ventre, Marie-France Bénassy, and Lilian Joly
Atmos. Meas. Tech., 17, 4471–4491, https://doi.org/10.5194/amt-17-4471-2024,https://doi.org/10.5194/amt-17-4471-2024, 2024
Short summary
Using metal oxide gas sensors to estimate the emission rates and locations of methane leaks in an industrial site: assessment with controlled methane releases
Rodrigo Rivera-Martinez, Pramod Kumar, Olivier Laurent, Gregoire Broquet, Christopher Caldow, Ford Cropley, Diego Santaren, Adil Shah, Cécile Mallet, Michel Ramonet, Leonard Rivier, Catherine Juery, Olivier Duclaux, Caroline Bouchet, Elisa Allegrini, Hervé Utard, and Philippe Ciais
Atmos. Meas. Tech., 17, 4257–4290, https://doi.org/10.5194/amt-17-4257-2024,https://doi.org/10.5194/amt-17-4257-2024, 2024
Short summary

Cited articles

Bates, D. R., and Nicolet, M.: The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301–307, 1950. 
Beard, M. E., Margeson, J. H., and Ellis, E. C.: Evaluation of 1 percent neutral buffered potassium iodide solution for calibration of ozone monitors, Report No. EPA-600/4-77-005, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 1977. 
Birks, J. W.: Oxidant formation in the troposphere, in: Perspectives in Environmental Chemistry, edited by: Macalady, D. L., Oxford University Press, 233–256, 1998. 
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, 2015. 
Cantrell, C. A., Zimmer, A., and Tyndall, G. S.: Absorption cross sections for water vapor from 183 to 193 nm, Geophys. Res. Lett., 24, 2195–2198, 1997. 
Download
Short summary
A highly portable ozone calibration source based on the photolysis of oxygen is described and evaluated. The ozone mixing ratio produced is independent of both pressure and temperature, and humidity effects are small and correctable. The resulting O3 calibrator has a response time < 20 s, a precision of 0.4 %, and can serve as a U.S. EPA level 4 transfer standard for the calibration of ozone analyzers.