Articles | Volume 11, issue 1
Atmos. Meas. Tech., 11, 611–632, 2018
https://doi.org/10.5194/amt-11-611-2018
Atmos. Meas. Tech., 11, 611–632, 2018
https://doi.org/10.5194/amt-11-611-2018
Research article
01 Feb 2018
Research article | 01 Feb 2018

Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures

Manfred Brath et al.

Related authors

How adequately are elevated moist layers represented in reanalysis and satellite observations?
Marc Prange, Stefan A. Buehler, and Manfred Brath
EGUsphere, https://doi.org/10.5194/egusphere-2022-755,https://doi.org/10.5194/egusphere-2022-755, 2022
Short summary
Optically thin clouds in the trades
Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 6879–6898, https://doi.org/10.5194/acp-22-6879-2022,https://doi.org/10.5194/acp-22-6879-2022, 2022
Short summary
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022,https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Are elevated moist layers a blind spot for hyperspectral infrared sounders? A model study
Marc Prange, Manfred Brath, and Stefan A. Buehler
Atmos. Meas. Tech., 14, 7025–7044, https://doi.org/10.5194/amt-14-7025-2021,https://doi.org/10.5194/amt-14-7025-2021, 2021
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022,https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022,https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Segmentation-based multi-pixel cloud optical thickness retrieval using a convolutional neural network
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022,https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Top-of-the-atmosphere reflected shortwave radiative fluxes from GOES-R
Rachel T. Pinker, Yingtao Ma, Wen Chen, Istvan Laszlo, Hongqing Liu, Hye-Yun Kim, and Jaime Daniels
Atmos. Meas. Tech., 15, 5077–5094, https://doi.org/10.5194/amt-15-5077-2022,https://doi.org/10.5194/amt-15-5077-2022, 2022
Short summary
Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022,https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary

Cited articles

Brath, M., Fox, S., Eriksson, P., Harlow, R. C., Burgdorf, M., and Buehler, S. A.: Supplement to “Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures”, Atmospheric Measurement Techniques, https://doi.org/10.5281/zenodo.1156514, 2018.
Buehler, S., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.: ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Ra., 91, 65–93, https://doi.org/10.1016/j.jqsrt.2004.05.051, 2005.
Buehler, S. A., Jiménez, C., Evans, K. F., Eriksson, P., Rydberg, B., Heymsfield, A. J., Stubenrauch, C. J., Lohmann, U., Emde, C., John, V. O., and Sreerekhai, T. R., and Davis, C. P.: A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude, Q. J. Roy. Meteorol. Soc., 133, 109–128, https://doi.org/10.1002/qj.143, 2007.
Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943, https://doi.org/10.5194/acp-12-10925-2012, 2012a.
Buehler, S. A., Defer, E., Evans, F., Eliasson, S., Mendrok, J., Eriksson, P., Lee, C., Jiménez, C., Prigent, C., Crewell, S., Kasai, Y., Bennartz, R., and Gasiewski, A. J.: Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8, Atmos. Meas. Tech., 5, 1529–1549, https://doi.org/10.5194/amt-5-1529-2012, 2012b.
Download
Short summary
A method to estimate the amounts of ice, liquid water, and water vapor from aircraft radiation measurements at wavelengths just over and under 1 mm is presented and its performance is estimated. The method uses an ensemble of artificial neural networks. It strongly benefits from the submillimeter frequencies reducing the error for the estimated amount of ice by a factor of 2 compared to a traditional microwave method. The method was applied to measurement of a precipitating frontal system.