Articles | Volume 11, issue 12
https://doi.org/10.5194/amt-11-6525-2018
https://doi.org/10.5194/amt-11-6525-2018
Research article
 | 
07 Dec 2018
Research article |  | 07 Dec 2018

Analysis of a warehouse fire smoke plume over Paris with an N2 Raman lidar and an optical thickness matching algorithm

Xiaoxia Shang, Patrick Chazette, and Julien Totems

Related authors

Lidar estimates of birch pollen number, mass, and CCN-related concentrations
Maria Filioglou, Petri Tiitta, Xiaoxia Shang, Ari Leskinen, Pasi Ahola, Sanna Pätsi, Annika Saarto, Ville Vakkari, Uula Isopahkala, and Mika Komppula
Atmos. Chem. Phys., 25, 1639–1657, https://doi.org/10.5194/acp-25-1639-2025,https://doi.org/10.5194/acp-25-1639-2025, 2025
Short summary
Can pollen affect precipitation?
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025,https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Decomposition of three aerosol components using lidar-derived depolarization ratios at two wavelengths
Xiaoxia Shang, Maria Filioglou, Julian Hofer, Moritz Haarig, Qiaoyun Hu, Philippe Goloub, Sami Romakkaniemi, and Mika Komppula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3460,https://doi.org/10.5194/egusphere-2024-3460, 2025
Short summary
Assessment of carbon mass in a Mediterranean downy oak ecosystem using airborne lidar and NASA Global Ecosystem Dynamics Investigation (GEDI) data
Maëlie Chazette, Patrick Chazette, Ilja M. Reiter, Xiaoxia Shang, Julien Totems, Jean-Philippe Orts, Irène Xueref-Remy, and Nicolas Montes
Biogeosciences, 21, 3289–3303, https://doi.org/10.5194/bg-21-3289-2024,https://doi.org/10.5194/bg-21-3289-2024, 2024
Short summary
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024,https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Producing aerosol size distributions consistent with optical particle counter measurements using space-based measurements of aerosol extinction coefficient
Nicholas Ernest, Larry W. Thomason, and Terry Deshler
Atmos. Meas. Tech., 18, 2957–2968, https://doi.org/10.5194/amt-18-2957-2025,https://doi.org/10.5194/amt-18-2957-2025, 2025
Short summary
Star photometry with all-sky cameras to retrieve aerosol optical depth at nighttime
Roberto Román, Daniel González-Fernández, Juan Carlos Antuña-Sánchez, Celia Herrero del Barrio, Sara Herrero-Anta, África Barreto, Victoria E. Cachorro, Lionel Doppler, Ramiro González, Christoph Ritter, David Mateos, Natalia Kouremeti, Gustavo Copes, Abel Calle, María José Granados-Muñoz, Carlos Toledano, and Ángel M. de Frutos
Atmos. Meas. Tech., 18, 2847–2875, https://doi.org/10.5194/amt-18-2847-2025,https://doi.org/10.5194/amt-18-2847-2025, 2025
Short summary
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary

Cited articles

Ångström, A.: The parameters of atmospheric turbidity, Tellus A, 16, 64–75, https://doi.org/10.3402/tellusa.v16i1.8885, 1964. 
Ansmann, A.: Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?, Appl. Opt., 45, 3367, https://doi.org/10.1364/AO.45.003367, 2006. 
Ansmann, A., Riebesell, M., and Weitkamp, C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett., 15, 746, https://doi.org/10.1364/OL.15.000746, 1990. 
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar., Appl. Opt., 31, 7113, https://doi.org/10.1364/AO.31.007113, 1992. 
Ansmann, A., Seifert, P., Tesche, M., and Wandinger, U.: Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes, Atmos. Chem. Phys., 12, 9399–9415, https://doi.org/10.5194/acp-12-9399-2012, 2012. 
Download
Short summary
For the first time, a ground-based N2 Raman lidar sampled smoke plumes originating from a large accidental warehouse fire in the Paris area. We developed a new algorithm, dubbed top-down aerosol optical thickness matching, to characterize the optical properties of the smoke aerosols, without a pre-determined reference zone and in the presence of clouds. The industrial pollution episode was concomitant with the long-range transport of dust aerosols and the presence of an extended stratus cloud.
Share