Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-2033-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-2033-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effect of dry or wet substrate deposition on the organic volume fraction of core–shell aerosol particles
Hansol D. Lee
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Chathuri P. Kaluarachchi
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Elias S. Hasenecz
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Jonic Z. Zhu
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Eduard Popa
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Elizabeth A. Stone
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Alexei V. Tivanski
CORRESPONDING AUTHOR
Department of Chemistry, University of Iowa, Iowa City, IA 52242,
USA
Related authors
No articles found.
Kathryn A. Moore, Thomas C. J. Hill, Samantha Greeney, Chamika K. Madawala, Raymond J. Leibensperger III, Christopher D. Cappa, M. Dale Stokes, Grant B. Deane, Christopher Lee, Alexei V. Tivanski, Kimberly A. Prather, and Paul J. DeMott
EGUsphere, https://doi.org/10.5194/egusphere-2024-2159, https://doi.org/10.5194/egusphere-2024-2159, 2024
Short summary
Short summary
This article presents results from the first study in a new wind-wave channel at the Scripps Institution of Oceanography. The experiment tested how wind speed over the ocean surface influences production of sea spray particles, which are important for radiative forcing and cloud formation in the atmosphere. We found that particle concentration and chemical composition varied with winds speed, and the changes were driven by changes in wind and wave-breaking rather seawater biology or chemistry.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Min Zhong, Eri Saikawa, Alexander Avramov, Chen Chen, Boya Sun, Wenlu Ye, William C. Keene, Robert J. Yokelson, Thilina Jayarathne, Elizabeth A. Stone, Maheswar Rupakheti, and Arnico K. Panday
Atmos. Chem. Phys., 19, 8209–8228, https://doi.org/10.5194/acp-19-8209-2019, https://doi.org/10.5194/acp-19-8209-2019, 2019
Short summary
Short summary
Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, the capital city of Nepal. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and found that they have significant impacts on air quality surrounding the valley. Our results highlight the importance of improving local emissions estimates for air quality modeling.
Anusha Priyadarshani Silva Hettiyadura, Ibrahim M. Al-Naiema, Dagen D. Hughes, Ting Fang, and Elizabeth A. Stone
Atmos. Chem. Phys., 19, 3191–3206, https://doi.org/10.5194/acp-19-3191-2019, https://doi.org/10.5194/acp-19-3191-2019, 2019
Short summary
Short summary
This study examines anthropogenic influences on secondary organic aerosol at an urban site in Atlanta, Georgia. Organosulfates accounted for 16.5 % of PM2.5 organic carbon and were mostly derived from isoprene. In contrast to a rural forested site, Atlanta's isoprene-derived organosulfate concentrations were 2–6 times higher and accounted for twice as much organic carbon. Insights are provided as to which organosulfates should be measured in future studies and targeted for standard development.
Ibrahim M. Al-Naiema, Anusha P. S. Hettiyadura, Henry W. Wallace, Nancy P. Sanchez, Carter J. Madler, Basak Karakurt Cevik, Alexander A. T. Bui, Josh Kettler, Robert J. Griffin, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 15601–15622, https://doi.org/10.5194/acp-18-15601-2018, https://doi.org/10.5194/acp-18-15601-2018, 2018
Short summary
Short summary
By integrating newly developed tracers for anthropogenic secondary organic aerosol in source apportionment for the first time, we estimate that this source contributes 28 % of fine particle organic carbon in the Houston Ship Channel. Our approach can be used to evaluate anthropogenic, biogenic, and biomass burning contributions to secondary organic aerosols elsewhere in the world. Because anthropogenic emissions are potentially controllable, they provide an opportunity to improve air quality.
J. Douglas Goetz, Michael R. Giordano, Chelsea E. Stockwell, Ted J. Christian, Rashmi Maharjan, Sagar Adhikari, Prakash V. Bhave, Puppala S. Praveen, Arnico K. Panday, Thilina Jayarathne, Elizabeth A. Stone, Robert J. Yokelson, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018, https://doi.org/10.5194/acp-18-14653-2018, 2018
Short summary
Short summary
Size distributions and emission factors of submicron aerosol were quantified using online techniques for a variety of common but under-sampled combustion sources in South Asia: wood and dung cooking fires, groundwater pumps, brick kilns, trash burning, and open burning of crop residues. Optical properties (brown carbon light absorption and the absorption Ångström exponent, AAE) of the emissions were also investigated. Contextual comparisons to the literature and other NAMaSTE results were made.
Thilina Jayarathne, Chelsea E. Stockwell, Ashley A. Gilbert, Kaitlyn Daugherty, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2585–2600, https://doi.org/10.5194/acp-18-2585-2018, https://doi.org/10.5194/acp-18-2585-2018, 2018
Short summary
Short summary
Fine particulate matter (PM2.5) emissions from Indonesian peat burning were measured in situ. Fuel-based emission factors from 6.0–29.6 gPM kg-1. Detailed chemical analysis revealed high levels of organic carbon that was primarily water insoluble, little to no detectable elemental carbon, and alkane contributions to organic carbon in the range of 6 %. These data were used to estimate that 3.2–11 Tg of PM2.5 were emitted by the 2015 peat burning episodes in Indonesia.
Thilina Jayarathne, Chelsea E. Stockwell, Prakash V. Bhave, Puppala S. Praveen, Chathurika M. Rathnayake, Md. Robiul Islam, Arnico K. Panday, Sagar Adhikari, Rashmi Maharjan, J. Douglas Goetz, Peter F. DeCarlo, Eri Saikawa, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, https://doi.org/10.5194/acp-18-2259-2018, 2018
Short summary
Short summary
Emissions of fine particulate matter and its constituents were quantified for a variety of under-sampled combustion sources in South Asia: wood and dung cooking fires, generators, groundwater pumps, brick kilns, trash burning, and open burning of biomasses. Garbage burning and three-stone cooking fires were among the highest emitters, while servicing of motor vehicles significantly reduced PM. These data may be used in source apportionment and to update regional and global emission inventories.
Rudra P. Pokhrel, Eric R. Beamesderfer, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 17, 5063–5078, https://doi.org/10.5194/acp-17-5063-2017, https://doi.org/10.5194/acp-17-5063-2017, 2017
Short summary
Short summary
This study investigates enhancement of black carbon (BC) absorption in biomass burning emissions due to absorbing and non-absorbing coatings. The fraction of absorption due to BC, brown carbon (BrC), and lensing is estimated using different approaches. The similarities and differences between the results from these approaches are discussed. Absorption by BrC is shown to have good correlation with the elemental to organic carbon ratio (EC / OC) and AAE.
Chathurika M. Rathnayake, Nervana Metwali, Thilina Jayarathne, Josh Kettler, Yuefan Huang, Peter S. Thorne, Patrick T. O'Shaughnessy, and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 2459–2475, https://doi.org/10.5194/acp-17-2459-2017, https://doi.org/10.5194/acp-17-2459-2017, 2017
Short summary
Short summary
Exposures to bioaerosols depend on their type, particle size, and concentration. While typically found in coarse particles (2.5–10 microns), pollens, fungal spores, and bacterial endotoxins decrease to less than 2.5 microns and simultaneously increase in concentration during rain events. These observations contrast the assumption that rain washes bioaerosols from the air and reduces allergen levels. Instead, population exposures to bioaerosols are expected to be enhanced during rain events.
Ibrahim M. Al-Naiema and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 2053–2065, https://doi.org/10.5194/acp-17-2053-2017, https://doi.org/10.5194/acp-17-2053-2017, 2017
Short summary
Short summary
Molecular tracers have proven useful in estimating contributions of primary and biogenic secondary sources to atmospheric particulate matter but have lagged behind for anthropogenic secondary sources. This study takes a field-based approach to evaluate the detectability, specificity, and gas–particle partitioning of prospective anthropogenic SOA tracers. We conclude that a subset of species are likely useful tracers and are recommended for use in future source apportionment studies.
Anusha P. S. Hettiyadura, Thilina Jayarathne, Karsten Baumann, Allen H. Goldstein, Joost A. de Gouw, Abigail Koss, Frank N. Keutsch, Kate Skog, and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, https://doi.org/10.5194/acp-17-1343-2017, 2017
Short summary
Short summary
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of sulfate. Herein, their abundance, identity, and potential to form as sampling artifacts were studied in Centreville, AL, USA. The 10 most abundant signals accounted for 58–78 % of the total, with at least 20–200 other species accounting for the remainder. These major species were largely associated with biogenic gases, like isoprene and monoterpenes, and are proposed targets for future standard development.
Marie Ila Gosselin, Chathurika M. Rathnayake, Ian Crawford, Christopher Pöhlker, Janine Fröhlich-Nowoisky, Beatrice Schmer, Viviane R. Després, Guenter Engling, Martin Gallagher, Elizabeth Stone, Ulrich Pöschl, and J. Alex Huffman
Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, https://doi.org/10.5194/acp-16-15165-2016, 2016
Short summary
Short summary
We present an analysis of bioaerosol measurements using two real-time fluorescence instruments in combination with molecular tracer techniques for quantifying airborne fungal spores in a semi-arid forest. Both techniques provide fungal spore concentrations of the order of 104 m−3 and up to 30 % of particle mass. Rainy periods exhibited higher concentrations and stronger correlations between fluorescent bioparticle and molecular tracer measurements. Fungal culture results are also presented.
Chelsea E. Stockwell, Thilina Jayarathne, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Donald R. Blake, Isobel J. Simpson, Elizabeth A. Stone, and Robert J. Yokelson
Atmos. Chem. Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-2016, https://doi.org/10.5194/acp-16-11711-2016, 2016
Short summary
Short summary
We present the first or rare field measurements of emission factors for Indonesian peat fires made in Borneo during the 2015 El Niño. The data include up to 90 gases, aerosol mass, and aerosol optical properties at two wavelengths (405 and 870 nm). Brown carbon dominates aerosol absorption, revisions to previous values for greenhouse gas emissions are supported and air toxics are assessed.
Chelsea E. Stockwell, Ted J. Christian, J. Douglas Goetz, Thilina Jayarathne, Prakash V. Bhave, Puppala S. Praveen, Sagar Adhikari, Rashmi Maharjan, Peter F. DeCarlo, Elizabeth A. Stone, Eri Saikawa, Donald R. Blake, Isobel J. Simpson, Robert J. Yokelson, and Arnico K. Panday
Atmos. Chem. Phys., 16, 11043–11081, https://doi.org/10.5194/acp-16-11043-2016, https://doi.org/10.5194/acp-16-11043-2016, 2016
Short summary
Short summary
We present the first, or rare, field measurements in South Asia of emission factors for up to 80 gases (pollutants, greenhouse gases, and precursors) and black carbon and aerosol optical properties at 405 and 870 nm for many previously under-sampled sources that are important in developing countries such as cooking with dung and wood, garbage and crop residue burning, brick kilns, motorcycles, generators and pumps, etc. Brown carbon contributes significantly to total aerosol absorption.
Matthieu Riva, Thais Da Silva Barbosa, Ying-Hsuan Lin, Elizabeth A. Stone, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, https://doi.org/10.5194/acp-16-11001-2016, 2016
Short summary
Short summary
Formation of organosulfates (OSs) in secondary organic aerosol from the photooxidation of alkanes is reported from smog chamber experiments. Effects of acidity and relative humidity on OS formation were examined. Most of the OSs identified could be explained by formation of gaseous epoxide and/or hydroperoxide precursors with subsequent acid-catalyzed multiphase chemistry onto sulfate aerosol. The OSs identified here were also observed and quantified in aerosols collected in two urban areas.
Rudra P. Pokhrel, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-9549-2016, https://doi.org/10.5194/acp-16-9549-2016, 2016
Short summary
Short summary
This paper gives first multi-wavelength estimates of SSA and AAE of emissions from combustion of Indonesian peat. In addition, it demonstrates that SSA of biomass burning emissions can be parameterized with EC / (EC+OC) and that this parameterization is quantitatively superior to previously published parameterizations based on MCE. It also shows that EC / (EC+OC) parameterization accurately predicts SSA during the first few hours of aging of a biomass burning plume.
Weruka Rattanavaraha, Kevin Chu, Sri Hapsari Budisulistiorini, Matthieu Riva, Ying-Hsuan Lin, Eric S. Edgerton, Karsten Baumann, Stephanie L. Shaw, Hongyu Guo, Laura King, Rodney J. Weber, Miranda E. Neff, Elizabeth A. Stone, John H. Offenberg, Zhenfa Zhang, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 4897–4914, https://doi.org/10.5194/acp-16-4897-2016, https://doi.org/10.5194/acp-16-4897-2016, 2016
Short summary
Short summary
The mechanisms by which specific anthropogenic pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected from Birmingham, AL, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Isoprene SOA tracers were measured from these samples and compared to gas and aerosol data collected from the SEARCH network.
Min Zhong, Eri Saikawa, Yang Liu, Vaishali Naik, Larry W. Horowitz, Masayuki Takigawa, Yu Zhao, Neng-Huei Lin, and Elizabeth A. Stone
Geosci. Model Dev., 9, 1201–1218, https://doi.org/10.5194/gmd-9-1201-2016, https://doi.org/10.5194/gmd-9-1201-2016, 2016
Short summary
Short summary
Large discrepancies exist among emission inventories (e.g., REAS and EDGAR) at the provincial level in China. We use WRF-Chem to evaluate the impact of the difference in existing emission inventories and find that emissions inputs significantly affect our air pollutant simulation results. Our study highlights the importance of constraining emissions at the provincial level for regional air quality modeling over East Asia.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
A. P. S. Hettiyadura, E. A. Stone, S. Kundu, Z. Baker, E. Geddes, K. Richards, and T. Humphry
Atmos. Meas. Tech., 8, 2347–2358, https://doi.org/10.5194/amt-8-2347-2015, https://doi.org/10.5194/amt-8-2347-2015, 2015
Short summary
Short summary
Organosulfates are SOA products that have proven difficult to quantify. This study addresses the need for authentic quantification standards with a straightforward approach to synthesizing highly pure organosulfate potassium salts. New standards are used to develop a new separation protocol for small, functionalized organosulfates. Upon validation, this method is used to assess sample preparation protocols and to make new measurements of organosulfates in Centreville, Alabama.
S. Kundu, T. A. Quraishi, G. Yu, C. Suarez, F. N. Keutsch, and E. A. Stone
Atmos. Chem. Phys., 13, 4865–4875, https://doi.org/10.5194/acp-13-4865-2013, https://doi.org/10.5194/acp-13-4865-2013, 2013
Related subject area
Subject: Aerosols | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
An interlaboratory comparison to quantify oxidative potential measurement in aerosol particles: challenges and recommendations for harmonisation
Quantifying the uncertainties in thermal–optical analysis of carbonaceous aircraft engine emissions: an interlaboratory study
Pressure-dependent performance of two CEN-specified condensation particle counters
Characterisation of a self-sustained, water-based condensation particle counter for aircraft cruising pressure level operation
Importance of size representation and morphology in modelling optical properties of black carbon: comparison between laboratory measurements and model simulations
Characterization of tandem aerosol classifiers for selecting particles: implication for eliminating the multiple charging effect
Impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient – an optical closure study evaluating different nephelometer angular truncation and illumination corrections
Quantification of major particulate matter species from a single filter type using infrared spectroscopy – application to a large-scale monitoring network
Comparing black-carbon- and aerosol-absorption-measuring instruments – a new system using lab-generated soot coated with controlled amounts of secondary organic matter
Assessment of real-time bioaerosol particle counters using reference chamber experiments
Constraining the response factors of an extractive electrospray ionization mass spectrometer for near-molecular aerosol speciation
Application of the ECT9 protocol for radiocarbon-based source apportionment of carbonaceous aerosols
Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities
Determination of Aethalometer multiple-scattering enhancement parameters and impact on source apportionment during the winter 2017/18 EMEP/ACTRIS/COLOSSAL campaign in Milan
Laboratory validation of a compact single-scattering albedo (SSA) monitor
Facility for production of ambient-like model aerosols (PALMA) in the laboratory: application in the intercomparison of automated PM monitors with the reference gravimetric method
An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
Multifactor colorimetric analysis on pH-indicator papers: an optimized approach for direct determination of ambient aerosol pH
Highly oxygenated organic molecule cluster decomposition in atmospheric pressure interface time-of-flight mass spectrometers
Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol
Nitrate radical generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor coupled to an oxidation flow reactor
Development of an antioxidant assay to study oxidative potential of airborne particulate matter
Determination of n-alkanes, polycyclic aromatic hydrocarbons and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches
Inter-comparison of elemental and organic carbon mass measurements from three North American national long-term monitoring networks at a co-located site
B3010: a boosted TSI 3010 condensation particle counter for airborne studies
Spectral Intensity Bioaerosol Sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time
HOx and NOx production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d7, and 1,3-propyl dinitrite at λ = 254, 350, and 369 nm
Can ozone be used to calibrate aerosol photoacoustic spectrometers?
The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements
Viscosity of erythritol and erythritol–water particles as a function of water activity: new results and an intercomparison of techniques for measuring the viscosity of particles
Characterization of steady-state fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods
Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2.5 from Xi'an, northwestern China
Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument
On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone
A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols
Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species
Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies
Characterization of three new condensation particle counters for sub-3 nm particle detection during the Helsinki CPC workshop: the ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010
A novel single-cavity three-wavelength photoacoustic spectrometer for atmospheric aerosol research
Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: implications for inter-protocol data conversion
Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system
Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol
The charging of neutral dimethylamine and dimethylamine–sulfuric acid clusters using protonated acetone
Validation of the poke-flow technique combined with simulations of fluid flow for determining viscosities in samples with small volumes and high viscosities
Determination of atmospheric organosulfates using HILIC chromatography with MS detection
Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium
Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition
ECOC comparison exercise with identical thermal protocols after temperature offset correction – instrument diagnostics by in-depth evaluation of operational parameters
An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples
Refractory black carbon mass concentrations in snow and ice: method evaluation and inter-comparison with elemental carbon measurement
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Timothy A. Sipkens, Joel C. Corbin, Brett Smith, Stéphanie Gagné, Prem Lobo, Benjamin T. Brem, Mark P. Johnson, and Gregory J. Smallwood
Atmos. Meas. Tech., 17, 4291–4302, https://doi.org/10.5194/amt-17-4291-2024, https://doi.org/10.5194/amt-17-4291-2024, 2024
Short summary
Short summary
Carbonaceous particles, such as soot, contribute to climate forcing, air pollution, and human health impacts. Thermal–optical analysis is a calibration standard used to measure these particles, but significant differences have been observed in the measurements across identical instruments. We report on the reproducibility of these measurements for aircraft emissions, which range from 8.0 % of the nominal value for organic carbon to 17 % for elemental carbon.
Paulus S. Bauer, Dorian Spät, Martina Eisenhut, Andreas Gattringer, and Bernadett Weinzierl
Atmos. Meas. Tech., 16, 4445–4460, https://doi.org/10.5194/amt-16-4445-2023, https://doi.org/10.5194/amt-16-4445-2023, 2023
Short summary
Short summary
Particle number concentration is one of the most important parameters to quantify an aerosol. Aerosol number concentration in the nanometer range is commonly measured with condensation particle counters (CPCs). A CEN technical specification harmonizes the CPC specifications. However, it is not specified for low-pressure conditions as on high mountains or on airplanes. Here, we present the pressure-dependent performance of two different models of CEN CPCs, the Grimm 5410 CEN and the TSI 3772 CEN.
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Susanne Hering, Steven Spielman, Gregory Lewis, Andreas Petzold, and Ulrich Bundke
Atmos. Meas. Tech., 16, 3505–3514, https://doi.org/10.5194/amt-16-3505-2023, https://doi.org/10.5194/amt-16-3505-2023, 2023
Short summary
Short summary
This study tests the new water condensation particle counter (MAGIC 210-LP) for deployment on passenger aircraft coordinated by the European research infrastructure IAGOS. We conducted a series of laboratory experiments for flight altitude conditions. We demonstrate that this water condensation particle counter model shows excellent agreement with a butanol-based instrument used in parallel and a Faraday cup electrometer as reference instrument at all tested pressure conditions.
Baseerat Romshoo, Mira Pöhlker, Alfred Wiedensohler, Sascha Pfeifer, Jorge Saturno, Andreas Nowak, Krzysztof Ciupek, Paul Quincey, Konstantina Vasilatou, Michaela N. Ess, Maria Gini, Konstantinos Eleftheriadis, Chris Robins, François Gaie-Levrel, and Thomas Müller
Atmos. Meas. Tech., 15, 6965–6989, https://doi.org/10.5194/amt-15-6965-2022, https://doi.org/10.5194/amt-15-6965-2022, 2022
Short summary
Short summary
Black carbon (BC) is often assumed to be spherically shaped, causing uncertainties in its optical properties when modelled. This study investigates different modelling techniques for the optical properties of BC by comparing them to laboratory measurements. We provide experimental support for emphasizing the use of appropriate size representation (polydisperse size method) and morphological representation (aggregate morphology) for optical modelling and parameterization scheme development of BC.
Yao Song, Xiangyu Pei, Huichao Liu, Jiajia Zhou, and Zhibin Wang
Atmos. Meas. Tech., 15, 3513–3526, https://doi.org/10.5194/amt-15-3513-2022, https://doi.org/10.5194/amt-15-3513-2022, 2022
Short summary
Short summary
Accurate particle classification is very important in aerosol studies. Differential mobility analyzers (DMAs), centrifugal particle mass analyzers (CPMAs), aerodynamic aerosol classifiers (AACs) and their tandem systems are commonly used. We demonstrated that DMA–CPMA is more susceptible to the multiple charging effect than DMA–AAC. It is not suggested to reduce the resolutions of the instruments, especially when selecting small-size soot particles.
Marilena Teri, Thomas Müller, Josef Gasteiger, Sara Valentini, Helmuth Horvath, Roberta Vecchi, Paulus Bauer, Adrian Walser, and Bernadett Weinzierl
Atmos. Meas. Tech., 15, 3161–3187, https://doi.org/10.5194/amt-15-3161-2022, https://doi.org/10.5194/amt-15-3161-2022, 2022
Short summary
Short summary
We performed an extensive closure study including laboratory and simulated experiments to evaluate various angular corrections for the Aurora 4000 polar nephelometer, focusing on irregularly shaped aerosols such as mineral dust. We describe the impact of particle size, refractive index, and shape on the determination of the particle scattering coefficient and propose a guideline to establish the most appropriate angular correction depending on the aerosol type and the investigated size range.
Bruno Debus, Andrew T. Weakley, Satoshi Takahama, Kathryn M. George, Anahita Amiri-Farahani, Bret Schichtel, Scott Copeland, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2685–2702, https://doi.org/10.5194/amt-15-2685-2022, https://doi.org/10.5194/amt-15-2685-2022, 2022
Short summary
Short summary
In the US, routine particulate matter composition is measured on samples collected on three types of filter media and analyzed using several techniques. We propose an alternate approach that uses one analytical technique, Fourier transform-infrared spectroscopy (FT-IR), and one filter type to measure the chemical composition of particulate matter in a major US monitoring network. This method could be used to add low-cost sites to the network, fill-in missing data, or for quality control.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
Gian Lieberherr, Kevin Auderset, Bertrand Calpini, Bernard Clot, Benoît Crouzy, Martin Gysel-Beer, Thomas Konzelmann, José Manzano, Andrea Mihajlovic, Alireza Moallemi, David O'Connor, Branko Sikoparija, Eric Sauvageat, Fiona Tummon, and Konstantina Vasilatou
Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, https://doi.org/10.5194/amt-14-7693-2021, 2021
Short summary
Short summary
Today there is no standard procedure to validate bioaerosol and pollen monitors. Three instruments were tested, focusing on detecting particles of different sizes. Only one instrument was able to detect the smallest particles (0.5 µm Ø), whereas the others performed best at the largest tested particles (10 µm Ø). These results are the first step towards a standardised validation procedure. The need for a reference counting method for larger particles (pollen grains: 10–200 µm Ø) was emphasised.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Lin Huang, Wendy Zhang, Guaciara M. Santos, Blanca T. Rodríguez, Sandra R. Holden, Vincent Vetro, and Claudia I. Czimczik
Atmos. Meas. Tech., 14, 3481–3500, https://doi.org/10.5194/amt-14-3481-2021, https://doi.org/10.5194/amt-14-3481-2021, 2021
Short summary
Short summary
Radiocarbon (14C)-based source apportionment of aerosol carbon fractions requires the physical separation of OC from EC and minimizing of the incorporation of extraneous carbon. Using pure and mixed reference materials ranging in age from modern to fossil, we show that the ECT9 protocol effectively isolates OC and EC. This work expands existing opportunities for characterizing and monitoring sources of carbonaceous aerosols, including µg C-sized samples from the Arctic.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Vera Bernardoni, Luca Ferrero, Ezio Bolzacchini, Alice Corina Forello, Asta Gregorič, Dario Massabò, Griša Močnik, Paolo Prati, Martin Rigler, Luca Santagostini, Francesca Soldan, Sara Valentini, Gianluigi Valli, and Roberta Vecchi
Atmos. Meas. Tech., 14, 2919–2940, https://doi.org/10.5194/amt-14-2919-2021, https://doi.org/10.5194/amt-14-2919-2021, 2021
Short summary
Short summary
An instrument-dependent wavelength-independent parameter (C) is often used to face multiple-scattering issues affecting aerosol light absorption measurements by Aethalometers. Instead, we determined multi-wavelength C by comparison with absorption measurements of samples collected in parallel performed by an instrument developed in-house. Considering C wavelength dependence, harmonized results were obtained applying source and component apportionment models to data from different Aethalometers.
Julia Perim de Faria, Ulrich Bundke, Andrew Freedman, Timothy B. Onasch, and Andreas Petzold
Atmos. Meas. Tech., 14, 1635–1653, https://doi.org/10.5194/amt-14-1635-2021, https://doi.org/10.5194/amt-14-1635-2021, 2021
Short summary
Short summary
An evaluation of the performance and accuracy of a Cavity Attenuated Phase-Shift Single Scattering Albedo Monitor (CAPS PMSSA; Aerodyne Research, Inc.) was conducted in an optical-closure study with proven technologies for aerosol particle optical-property measurements. This study demonstrates that the CAPS PMSSA is a robust and reliable instrument for the direct measurement of the particle scattering and extinction coefficients and thus single-scattering albedo.
Stefan Horender, Kevin Auderset, Paul Quincey, Stefan Seeger, Søren Nielsen Skov, Kai Dirscherl, Thomas O. M. Smith, Katie Williams, Camille C. Aegerter, Daniel M. Kalbermatter, François Gaie-Levrel, and Konstantina Vasilatou
Atmos. Meas. Tech., 14, 1225–1238, https://doi.org/10.5194/amt-14-1225-2021, https://doi.org/10.5194/amt-14-1225-2021, 2021
Short summary
Short summary
A new facility has been developed which allows for the stable and reproducible generation of ambient-like model aerosols in the laboratory. The set-up consists of multiple aerosol generators, a custom-made flow tube homogeniser, isokinetic sampling probes, and a system to control aerosol temperature and humidity. The model aerosols, which contain fresh and aged soot, inorganic salt, and dust particles, can be used for the calibration of air quality monitoring instruments.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Guo Li, Hang Su, Nan Ma, Guangjie Zheng, Uwe Kuhn, Meng Li, Thomas Klimach, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 13, 6053–6065, https://doi.org/10.5194/amt-13-6053-2020, https://doi.org/10.5194/amt-13-6053-2020, 2020
Short summary
Short summary
Aerosol acidity plays an important role in regulating the chemistry, health, and ecological effect of aerosol particles. However, a direct measurement of aerosol pH is very challenging because of its fast transition and equilibrium with adjacent environments. Therefore, most early studies have to use modeled pH, resulting in intensive debates about model uncertainties. Here we developed an optimized approach to measure aerosol pH by using pH-indicator papers combined with RGB-based colorimetry.
Tommaso Zanca, Jakub Kubečka, Evgeni Zapadinsky, Monica Passananti, Theo Kurtén, and Hanna Vehkamäki
Atmos. Meas. Tech., 13, 3581–3593, https://doi.org/10.5194/amt-13-3581-2020, https://doi.org/10.5194/amt-13-3581-2020, 2020
Short summary
Short summary
In this paper we quantify (using a statistical model) the probability of decomposition of a representative class of HOM clusters in an APi-TOF mass spectrometer. This is important because it quantifies the systematic error of measurements in a APi-TOF MS due to cluster decomposition. The results (specific for our selected clusters) show that decomposition is negligible, provided their bonding energy is large enough to allow formation in the atmosphere in the first place.
Weiqi Xu, Yao He, Yanmei Qiu, Chun Chen, Conghui Xie, Lu Lei, Zhijie Li, Jiaxing Sun, Junyao Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Meas. Tech., 13, 3205–3219, https://doi.org/10.5194/amt-13-3205-2020, https://doi.org/10.5194/amt-13-3205-2020, 2020
Short summary
Short summary
We characterized mass spectral features of organic aerosol (OA) and water-soluble OA (WSOA) from 21 cooking, crop straw, wood, and coal burning experiments using aerosol mass spectrometers with standard and capture vaporizers, and we demonstrated the applications of source spectral profiles in improving source apportionment of ambient OA at a highly polluted rural site in the North China Plain in winter.
Andrew T. Lambe, Ezra C. Wood, Jordan E. Krechmer, Francesca Majluf, Leah R. Williams, Philip L. Croteau, Manuela Cirtog, Anaïs Féron, Jean-Eudes Petit, Alexandre Albinet, Jose L. Jimenez, and Zhe Peng
Atmos. Meas. Tech., 13, 2397–2411, https://doi.org/10.5194/amt-13-2397-2020, https://doi.org/10.5194/amt-13-2397-2020, 2020
Short summary
Short summary
We present a new method to continuously generate N2O5 in the gas phase that is injected into a reactor where it decomposes to generate nitrate radicals (NO3). To assess the applicability of the method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure and other metrics as a function of operating conditions. We demonstrate the method by characterizing secondary organic aerosol particles generated from the β-pinene + NO3 reaction.
Pourya Shahpoury, Tom Harner, Gerhard Lammel, Steven Lelieveld, Haijie Tong, and Jake Wilson
Atmos. Meas. Tech., 12, 6529–6539, https://doi.org/10.5194/amt-12-6529-2019, https://doi.org/10.5194/amt-12-6529-2019, 2019
Meng Wang, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Chunshui Lin, Haiyan Ni, Jing Duan, Ting Wang, Yang Chen, Yongjie Li, Qi Chen, Imad El Haddad, and Thorsten Hoffmann
Atmos. Meas. Tech., 12, 4779–4789, https://doi.org/10.5194/amt-12-4779-2019, https://doi.org/10.5194/amt-12-4779-2019, 2019
Short summary
Short summary
The analytical performances of SE-GC-MS and TD-GC-MS for the determination of n-alkanes, PAHs and hopanes were evaluated and compared. The two methods show a good agreement with a high correlation efficient (R2 > 0.98) and a slope close to unity. The concentrations of n-alkanes, PAHs and hopanes are found to be much higher in Beijing than those in Chengdu, Shanghai and Guangzhou, most likely due to emissions from coal combustion for wintertime heating in Beijing.
Tak W. Chan, Lin Huang, Kulbir Banwait, Wendy Zhang, Darrell Ernst, Xiaoliang Wang, John G. Watson, Judith C. Chow, Mark Green, Claudia I. Czimczik, Guaciara M. Santos, Sangeeta Sharma, and Keith Jones
Atmos. Meas. Tech., 12, 4543–4560, https://doi.org/10.5194/amt-12-4543-2019, https://doi.org/10.5194/amt-12-4543-2019, 2019
Short summary
Short summary
This study compared 10 years of carbonaceous aerosol measurements collected at Egbert by three North American long-term monitoring networks. The study evaluated how differences in sample collection and analysis affected the concentrations of total carbon (TC), organic carbon (OC), and elemental carbon (EC). Various carbonaceous fractions measured by the three networks were consistent and comparable over the period. Elevated OC and EC were observed when ambient temperature exceeded 10 °C.
David Picard, Michel Attoui, and Karine Sellegri
Atmos. Meas. Tech., 12, 2531–2543, https://doi.org/10.5194/amt-12-2531-2019, https://doi.org/10.5194/amt-12-2531-2019, 2019
Short summary
Short summary
We report here how we managed to improve the performance of an aerosol particle counter model TSI3010. Our device is based on a secondhand unit and reuses its core elements (saturator, condenser, optics). We redesigned the electronics and thermal management. Laboratory experiments show that the cutoff diameter was decreased from 10 to 2.5 nm, bringing the B3010 close to more complex and expensive products. These results may help designers and users improve the performance of their devices.
Tobias Könemann, Nicole Savage, Thomas Klimach, David Walter, Janine Fröhlich-Nowoisky, Hang Su, Ulrich Pöschl, J. Alex Huffman, and Christopher Pöhlker
Atmos. Meas. Tech., 12, 1337–1363, https://doi.org/10.5194/amt-12-1337-2019, https://doi.org/10.5194/amt-12-1337-2019, 2019
Short summary
Short summary
This study presents a comprehensive assessment of the SIBS, an instrument for spectrally resolved fluorescence detection of single particles. Exemplary ambient data and fluorescence spectra obtained for 16 reference compounds (biofluorophores and PSLs) show that the SIBS has the ability to expand the scope of fluorescent bioaerosol quantification and classification. Detailed technical insights will be broadly beneficial for users of various WIBS generations and other LIF instruments.
Andrew T. Lambe, Jordan E. Krechmer, Zhe Peng, Jason R. Casar, Anthony J. Carrasquillo, Jonathan D. Raff, Jose L. Jimenez, and Douglas R. Worsnop
Atmos. Meas. Tech., 12, 299–311, https://doi.org/10.5194/amt-12-299-2019, https://doi.org/10.5194/amt-12-299-2019, 2019
Short summary
Short summary
This paper is an evaluation of methods used to generate OH radicals under conditions with high concentrations of NO and NO2 to simulate oxidation chemistry in polluted urban atmospheres over equivalent atmospheric timescales of ~ 1 day.
D. Al Fischer and Geoffrey D. Smith
Atmos. Meas. Tech., 11, 6419–6427, https://doi.org/10.5194/amt-11-6419-2018, https://doi.org/10.5194/amt-11-6419-2018, 2018
Short summary
Short summary
Photoacoustic spectroscopy is a commonly used technique for measuring light absorption by aerosols, but it requires careful calibration to be accurate. Here, we explore the use of one popular calibrant, ozone, and demonstrate that its response is dependent on the identity of the bath gas used.
Paul J. DeMott, Ottmar Möhler, Daniel J. Cziczo, Naruki Hiranuma, Markus D. Petters, Sarah S. Petters, Franco Belosi, Heinz G. Bingemer, Sarah D. Brooks, Carsten Budke, Monika Burkert-Kohn, Kristen N. Collier, Anja Danielczok, Oliver Eppers, Laura Felgitsch, Sarvesh Garimella, Hinrich Grothe, Paul Herenz, Thomas C. J. Hill, Kristina Höhler, Zamin A. Kanji, Alexei Kiselev, Thomas Koop, Thomas B. Kristensen, Konstantin Krüger, Gourihar Kulkarni, Ezra J. T. Levin, Benjamin J. Murray, Alessia Nicosia, Daniel O'Sullivan, Andreas Peckhaus, Michael J. Polen, Hannah C. Price, Naama Reicher, Daniel A. Rothenberg, Yinon Rudich, Gianni Santachiara, Thea Schiebel, Jann Schrod, Teresa M. Seifried, Frank Stratmann, Ryan C. Sullivan, Kaitlyn J. Suski, Miklós Szakáll, Hans P. Taylor, Romy Ullrich, Jesus Vergara-Temprado, Robert Wagner, Thomas F. Whale, Daniel Weber, André Welti, Theodore W. Wilson, Martin J. Wolf, and Jake Zenker
Atmos. Meas. Tech., 11, 6231–6257, https://doi.org/10.5194/amt-11-6231-2018, https://doi.org/10.5194/amt-11-6231-2018, 2018
Short summary
Short summary
The ability to measure ice nucleating particles is vital to quantifying their role in affecting clouds and precipitation. Methods for measuring droplet freezing were compared while co-sampling relevant particle types. Measurement correspondence was very good for ice nucleating particles of bacterial and natural soil origin, and somewhat more disparate for those of mineral origin. Results reflect recently improved capabilities and provide direction toward addressing remaining measurement issues.
Yangxi Chu, Erin Evoy, Saeid Kamal, Young Chul Song, Jonathan P. Reid, Chak K. Chan, and Allan K. Bertram
Atmos. Meas. Tech., 11, 4809–4822, https://doi.org/10.5194/amt-11-4809-2018, https://doi.org/10.5194/amt-11-4809-2018, 2018
Short summary
Short summary
The viscosity of erythritol, a tetrol found in aerosol particles, is highly uncertain. To help resolve this uncertainty, we measured the viscosities of
erythritol–water particles using rectangular-area fluorescence recovery after photobleaching and aerosol optical tweezers techniques. These results
should help improve the understanding of the viscosity of secondary organic aerosol particles. In addition, we present an intercomparison of techniques
for measuring the viscosity of particles.
Tobias Könemann, Nicole J. Savage, J. Alex Huffman, and Christopher Pöhlker
Atmos. Meas. Tech., 11, 3987–4003, https://doi.org/10.5194/amt-11-3987-2018, https://doi.org/10.5194/amt-11-3987-2018, 2018
Short summary
Short summary
This study presents an overview of fluorescence properties of polystyrene latex spheres (PSLs), which are widely used in numerous scientific disciplines. By using different spectroscopic techniques, we show that the
fluorescence landscapeof PSLs is more complex than the information provided by manufacturers may imply. By understanding general fluorescence properties of PSLs, individual researchers may probe specific spectral features important to the operation of their own instruments.
Ru-Jin Huang, Junji Cao, Yang Chen, Lu Yang, Jincan Shen, Qihua You, Kai Wang, Chunshui Lin, Wei Xu, Bo Gao, Yongjie Li, Qi Chen, Thorsten Hoffmann, Colin D. O'Dowd, Merete Bilde, and Marianne Glasius
Atmos. Meas. Tech., 11, 3447–3456, https://doi.org/10.5194/amt-11-3447-2018, https://doi.org/10.5194/amt-11-3447-2018, 2018
Chelsea E. Stockwell, Agnieszka Kupc, Bartłomiej Witkowski, Ranajit K. Talukdar, Yong Liu, Vanessa Selimovic, Kyle J. Zarzana, Kanako Sekimoto, Carsten Warneke, Rebecca A. Washenfelder, Robert J. Yokelson, Ann M. Middlebrook, and James M. Roberts
Atmos. Meas. Tech., 11, 2749–2768, https://doi.org/10.5194/amt-11-2749-2018, https://doi.org/10.5194/amt-11-2749-2018, 2018
Short summary
Short summary
This work investigates the total conversion of particle-bound nitrogen and organic carbon across platinum and molybdenum catalysts followed by NO–O3 chemiluminescence and nondispersive infrared CO2 detection. We show the instrument is an accurate particle mass measurement method and demonstrate its ability to calibrate particle mass measurement instrumentation through comparisons with a calibrated particle-into-liquid sampler coupled to an electrospray ionization source of a mass spectrometer.
Nicholas W. Davies, Michael I. Cotterell, Cathryn Fox, Kate Szpek, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 11, 2313–2324, https://doi.org/10.5194/amt-11-2313-2018, https://doi.org/10.5194/amt-11-2313-2018, 2018
Short summary
Short summary
The poorly characterised optical properties of atmospheric aerosols are one of the major uncertainties when modelling future climate change. Photoacoustic spectroscopy is an accurate and sensitive method for measurement of aerosol light absorption. Photoacoustic spectrometers require calibration; hence this study validates the use of ozone as a calibrant and simultaneously verifies the accuracy of the photoacoustic spectrometers in question.
Ulrich K. Krieger, Franziska Siegrist, Claudia Marcolli, Eva U. Emanuelsson, Freya M. Gøbel, Merete Bilde, Aleksandra Marsh, Jonathan P. Reid, Andrew J. Huisman, Ilona Riipinen, Noora Hyttinen, Nanna Myllys, Theo Kurtén, Thomas Bannan, Carl J. Percival, and David Topping
Atmos. Meas. Tech., 11, 49–63, https://doi.org/10.5194/amt-11-49-2018, https://doi.org/10.5194/amt-11-49-2018, 2018
Short summary
Short summary
Vapor pressures of low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique, which is generally reported to be smaller than a factor of 2. We determined saturation vapor pressures for the homologous series of polyethylene glycols ranging in vapor pressure at 298 K from 1E−7 Pa to 5E−2 Pa as a reference set.
Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Philip Croteau, Manjula R. Canagaratna, John T. Jayne, Douglas R. Worsnop, and Jose L. Jimenez
Atmos. Meas. Tech., 10, 2897–2921, https://doi.org/10.5194/amt-10-2897-2017, https://doi.org/10.5194/amt-10-2897-2017, 2017
Short summary
Short summary
Aerosol mass spectrometers (AMS) from ARI are used widely to measure the non-refractory species in PM1. Recently, a new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction in the commonly used standard vapourizer (SV) installed in AMS. To test the CV, the fragments, CE and size distributions of four pure inorganic species in the CV-AMS are investigated in various laboratory experiments. Results from the co-located SV-AMS are also shown as a comparison.
Andrew Lambe, Paola Massoli, Xuan Zhang, Manjula Canagaratna, John Nowak, Conner Daube, Chao Yan, Wei Nie, Timothy Onasch, John Jayne, Charles Kolb, Paul Davidovits, Douglas Worsnop, and William Brune
Atmos. Meas. Tech., 10, 2283–2298, https://doi.org/10.5194/amt-10-2283-2017, https://doi.org/10.5194/amt-10-2283-2017, 2017
Short summary
Short summary
This work enables the study of NOx-influenced secondary organic aerosol formation chemistry in oxidation flow reactors to an extent that was not previously possible. The method uses reactions of exited oxygen O(1D) radicals (formed from ozone photolysis at 254 nm or nitrous oxide photolysis at 185 nm) with nitrous oxide (N2O) to produce NO. We demonstrate proof of concept using chemical ionization mass spectrometer measurements to detect gas-phase oxidation products of isoprene and α -pinene.
Juha Kangasluoma, Susanne Hering, David Picard, Gregory Lewis, Joonas Enroth, Frans Korhonen, Markku Kulmala, Karine Sellegri, Michel Attoui, and Tuukka Petäjä
Atmos. Meas. Tech., 10, 2271–2281, https://doi.org/10.5194/amt-10-2271-2017, https://doi.org/10.5194/amt-10-2271-2017, 2017
Short summary
Short summary
The manuscript presents a characterization of three new particle counters able to detect airborne nanoparticles smaller than 3 nm in diameter. We explored some of the parameters affecting the smallest detectable particle size, such as sample flow relative humidity, the particle chemical composition and the electrical charging state. The characterization results help one to select a suitable particle counter for a given application.
Claudia Linke, Inas Ibrahim, Nina Schleicher, Regina Hitzenberger, Meinrat O. Andreae, Thomas Leisner, and Martin Schnaiter
Atmos. Meas. Tech., 9, 5331–5346, https://doi.org/10.5194/amt-9-5331-2016, https://doi.org/10.5194/amt-9-5331-2016, 2016
Short summary
Short summary
Various carbonaceous materials are present in the atmosphere. Besides gaseous organic compounds, carbonaceous particles like soot are emitted into the air from traffic sources, residential wood combustion, or wildfires. Variable chemical compositions of such materials, which often result from incomplete combustion processes, show differences in the absorption behavior at visible wavelengths. Our instrument is able to measure the absorption at three visible wavelengths.
Cheng Wu, X. H. Hilda Huang, Wai Man Ng, Stephen M. Griffith, and Jian Zhen Yu
Atmos. Meas. Tech., 9, 4547–4560, https://doi.org/10.5194/amt-9-4547-2016, https://doi.org/10.5194/amt-9-4547-2016, 2016
Short summary
Short summary
Organic carbon (OC) and elemental carbon (EC) in more than 1300 Hong Kong samples were analyzed using both NIOSH TOT and IMPROVE TOR protocols. EC discrepancy between the two protocols mainly (83 %) arises from a difference in peak inert mode temperature, while the rest (17 %) is attributed to a difference in the optical method (transmittance vs. reflectance) applied for the charring correction. Two approaches are proposed to translate NIOSH TOT OC and EC data into IMPROVE TOR OC and EC data.
Juha Kangasluoma, Alessandro Franchin, Jonahtan Duplissy, Lauri Ahonen, Frans Korhonen, Michel Attoui, Jyri Mikkilä, Katrianne Lehtipalo, Joonas Vanhanen, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 2977–2988, https://doi.org/10.5194/amt-9-2977-2016, https://doi.org/10.5194/amt-9-2977-2016, 2016
Short summary
Short summary
The paper describes technical aspects of using the Airmodus A11 nCNC at various inlet pressures and how temperature selection affects the performance of the instrument. We also present a sampling box to minimize the inlet losses and make use of the instrument more convenient.
G. O. Mouteva, S. M. Fahrni, G. M. Santos, J. T. Randerson, Y.-L. Zhang, S. Szidat, and C. I. Czimczik
Atmos. Meas. Tech., 8, 3729–3743, https://doi.org/10.5194/amt-8-3729-2015, https://doi.org/10.5194/amt-8-3729-2015, 2015
Short summary
Short summary
We describe a stepwise uncertainty analysis of 14C measurements of organic (OC) and elemental (EC) carbon fractions of aerosols. Using the Swiss_4S thermal-optical protocol with a newly established trapping setup, we show that we can efficiently isolate and trap each carbon fraction and perform 14C analysis of ultra-small OC and EC samples with high accuracy and low 14C blanks. Our study presents a first step towards the development of a common protocol for OC and EC 14C measurements.
K. Ruusuvuori, P. Hietala, O. Kupiainen-Määttä, T. Jokinen, H. Junninen, M. Sipilä, T. Kurtén, and H. Vehkamäki
Atmos. Meas. Tech., 8, 2577–2588, https://doi.org/10.5194/amt-8-2577-2015, https://doi.org/10.5194/amt-8-2577-2015, 2015
Short summary
Short summary
Ionization reagents suitable for accurate measurements of the atmospheric gas-phase amine vapour concentrations are needed. Based on computational results, acetone is a viable option for use as an ionization reagent in CI-APi-TOF measurements on atmospheric dimethylamine. However, comparison between the computational and experimental results revealed notable discrepancies. Further study is still required before the acetone CI-APi-TOF can be considered a viable option in practice.
J. W. Grayson, M. Song, M. Sellier, and A. K. Bertram
Atmos. Meas. Tech., 8, 2463–2472, https://doi.org/10.5194/amt-8-2463-2015, https://doi.org/10.5194/amt-8-2463-2015, 2015
A. P. S. Hettiyadura, E. A. Stone, S. Kundu, Z. Baker, E. Geddes, K. Richards, and T. Humphry
Atmos. Meas. Tech., 8, 2347–2358, https://doi.org/10.5194/amt-8-2347-2015, https://doi.org/10.5194/amt-8-2347-2015, 2015
Short summary
Short summary
Organosulfates are SOA products that have proven difficult to quantify. This study addresses the need for authentic quantification standards with a straightforward approach to synthesizing highly pure organosulfate potassium salts. New standards are used to develop a new separation protocol for small, functionalized organosulfates. Upon validation, this method is used to assess sample preparation protocols and to make new measurements of organosulfates in Centreville, Alabama.
M. Rodigast, A. Mutzel, Y. Iinuma, S. Haferkorn, and H. Herrmann
Atmos. Meas. Tech., 8, 2409–2416, https://doi.org/10.5194/amt-8-2409-2015, https://doi.org/10.5194/amt-8-2409-2015, 2015
Short summary
Short summary
An optimised method for derivatisation of carbonyl compounds with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) in aqueous samples is described. The comprehensive optimisation of the method leads to an improvement of the detection limit up to a factor of 10 highlighting the good sensitivity of the optimised method for atmospherically relevant carbonyl compounds. The optimised method was successfully applied to detect carbonyl compounds from the aqueous phase oxidation of 3-methylbutanone.
E. A. Bruns, I. El Haddad, A. Keller, F. Klein, N. K. Kumar, S. M. Pieber, J. C. Corbin, J. G. Slowik, W. H. Brune, U. Baltensperger, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2315–2332, https://doi.org/10.5194/amt-8-2315-2015, https://doi.org/10.5194/amt-8-2315-2015, 2015
P. Panteliadis, T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, D. Saraga, J. Sciare, J. L. Jaffrezo, A. John, J. Schwarz, M. Giannoni, J. Novak, A. Karanasiou, P. Fermo, and W. Maenhaut
Atmos. Meas. Tech., 8, 779–792, https://doi.org/10.5194/amt-8-779-2015, https://doi.org/10.5194/amt-8-779-2015, 2015
K. E. Yttri, J. Schnelle-Kreis, W. Maenhaut, G. Abbaszade, C. Alves, A. Bjerke, N. Bonnier, R. Bossi, M. Claeys, C. Dye, M. Evtyugina, D. García-Gacio, R. Hillamo, A. Hoffer, M. Hyder, Y. Iinuma, J.-L. Jaffrezo, A. Kasper-Giebl, G. Kiss, P. L. López-Mahia, C. Pio, C. Piot, C. Ramirez-Santa-Cruz, J. Sciare, K. Teinilä, R. Vermeylen, A. Vicente, and R. Zimmermann
Atmos. Meas. Tech., 8, 125–147, https://doi.org/10.5194/amt-8-125-2015, https://doi.org/10.5194/amt-8-125-2015, 2015
S. Lim, X. Faïn, M. Zanatta, J. Cozic, J.-L. Jaffrezo, P. Ginot, and P. Laj
Atmos. Meas. Tech., 7, 3307–3324, https://doi.org/10.5194/amt-7-3307-2014, https://doi.org/10.5194/amt-7-3307-2014, 2014
Cited articles
Ault, A. P. and Axson, J. L.: Atmospheric Aerosol Chemistry: Spectroscopic
and Microscopic Advances, Anal. Chem., 89, 430–452,
https://doi.org/10.1021/acs.analchem.6b04670, 2017.
Ault, A. P., Moffet, R. C., Baltrusaitis, J., Collins, D. B., Ruppel, M.
J., Cuadra-Rodriguez, L. A., Zhao, D. F., Guasco, T. L., Ebben, C. J.,
Geiger, F. M., Bertram, T. H., Prather, K. A., and Grassian, V. H.:
Size-Dependent Changes in Sea Spray Aerosol Composition and Properties with
Different Seawater Conditions, Environ. Sci. Technol., 47, 5603–5612,
https://doi.org/10.1021/es400416g, 2013.
Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.:
Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of
ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon
elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.
Binnig, G., Quate, C. F., and Gerber, C.: Atomic Force Microscope, Phys. Rev.
Lett., 56, 930–933, https://doi.org/10.1103/PhysRevLett.56.930, 1986.
Chi, J. W., Li, W. J., Zhang, D. Z., Zhang, J. C., Lin, Y. T., Shen, X. J., Sun, J. Y., Chen, J. M., Zhang, X. Y., Zhang, Y. M.,
and Wang, W. X.: Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere,
Atmos. Chem. Phys., 15, 11341–11353, https://doi.org/10.5194/acp-15-11341-2015, 2015.
Cochran, R. E., Jayarathne, T., Stone, E. A., and Grassian, V. H.:
Selectivity Across the Interface: A Test of Surface Activity in the
Composition of Organic-Enriched Aerosols from Bubble Bursting, J. Phys. Chem.
Lett., 7, 1692–1696, https://doi.org/10.1021/acs.jpclett.6b00489, 2016.
Cochran, R. E., Laskina, O., Trueblood, J. V., Estillore, A. D., Morris, H.
S., Jayarathne, T., Sultana, C. M., Lee, C., Lin, P., Laskin, J., Laskin,
A., Dowling, J. A., Qin, Z., Cappa, C. D., Bertram, T. H., Tivanski, A. V.,
Stone, E. A., Prather, K. A., and Grassian, V. H.: Molecular Diversity of
Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition
and Hygroscopicity, Chem, 2, 655–667, https://doi.org/10.1016/j.chempr.2017.03.007, 2017.
de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E.
R., O'Dowd, C., Schulz, M., and Schwartz, S. E.: Production Flux of Sea
Spray Aerosol, Rev. Geophys., 49, RG2001, https://doi.org/10.1029/2010RG000349, 2011.
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D.
B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T.,
Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S.,
Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault,
A. P., Axson, J. L., Martinez, M. D., Venero, I., Santos-Figueroa, G.,
Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram,
T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol
as a unique source of ice nucleating particles, P. Natl. Acad. Sci. USA, 113,
5797–5803, https://doi.org/10.1073/pnas.1514034112, 2016.
Estillore, A. D., Morris, H. S., Or, V. W., Lee, H. D., Alves, M. R.,
Marciano, M. A., Laskina, O., Qin, Z., Tivanski, A. V., and Grassian, V. H.:
Linking hygroscopicity and the surface microstructure of model inorganic
salts, simple and complex carbohydrates, and authentic sea spray aerosol
particles, Phys. Chem. Chem. Phys., 19, 21101–21111, https://doi.org/10.1039/C7CP04051B, 2017.
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999.
Facchini, M. C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Ceburnis, D., Flanagan, R., Nilsson, E. D., de Leeuw,
G., Martino, M., Woeltjen, J., and O'Dowd, C. D.: Primary submicron marine
aerosol dominated by insoluble organic colloids and aggregates, Geophys. Res.
Lett., 35, L17814,
https://doi.org/10.1029/2008gl034210, 2008.
Gan, Y.: Atomic and subnanometer resolution in ambient conditions by atomic
force microscopy, Surf. Sci. Rep., 64, 99–121, https://doi.org/10.1016/j.surfrep.2008.12.001,
2009.
Gerber, C.: Atomic Force Microscopy (AFM) the Ultimate Nano Toolkit, Sci.
Adv.
Mater., 9, 55–55, https://doi.org/10.1166/sam.2017.3018, 2017.
Grayson, J. W., Evoy, E., Song, M., Chu, Y., Maclean, A., Nguyen, A., Upshur, M. A., Ebrahimi, M., Chan, C. K., Geiger, F. M.,
Thomson, R. J., and Bertram, A. K.: The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline
organic and organic-water particles, Atmos. Chem. Phys., 17, 8509–8524, https://doi.org/10.5194/acp-17-8509-2017, 2017.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543,
2000.
Jacobson, M. Z.: Global direct radiative forcing due to multicomponent
anthropogenic and natural aerosols, J. Geophys. Res.-Atmos., 106, 1551–1568,
https://doi.org/10.1029/2000jd900514, 2001.
Jayarathne, T., Sultana, C. M., Lee, C., Malfatti, F., Cox, J. L.,
Pendergraft, M. A., Moore, K. A., Azam, F., Tivanski, A. V., Cappa, C. D.,
Bertram, T. H., Grassian, V. H., Prather, K. A., and Stone, E. A.:
Enrichment of Saccharides and Divalent Cations in Sea Spray Aerosol During
Two Phytoplankton Blooms, Environ. Sci. Technol., 50, 11511–11520,
https://doi.org/10.1021/acs.est.6b02988, 2016.
Krieger, U. K., Marcolli, C., and Reid, J. P.: Exploring the complexity of
aerosol particle properties and processes using single particle techniques,
Chem. Soc. Rev., 41, 6631–6662, https://doi.org/10.1039/c2cs35082c, 2012.
Laskin, A., Moffet, R. C., Gilles, M. K., Fast, J. D., Zaveri, R. A., Wang,
B. B., Nigge, P., and Shutthanandan, J.: Tropospheric chemistry of
internally mixed sea salt and organic particles: Surprising reactivity of
NaCl with weak organic acids, J. Geophys. Res.-Atmos., 117, D15302,
https://doi.org/10.1029/2012jd017743, 2012.
Laskina, O., Morris, H. S., Grandquist, J. R., Estillore, A. D., Stone, E.
A., Grassian, V. H., and Tivanski, A. V.: Substrate-Deposited Sea Spray
Aerosol Particles: Influence of Analytical Method, Substrate, and Storage
Conditions on Particle Size, Phase, and Morphology, Environ. Sci. Technol., 49,
13447–13453, https://doi.org/10.1021/acs.est.5b02732, 2015.
Lee, H. D., Estillore, A. D., Morris, H. S., Ray, K. K., Alejandro, A.,
Grassian, V. H., and Tivanski, A. V.: Direct Surface Tension Measurements of
Individual Sub-Micrometer Particles Using Atomic Force Microscopy, J. Phys.
Chem. A, 121, 8296–8305, https://doi.org/10.1021/acs.jpca.7b04041, 2017a.
Lee, H. D., Ray, K. K., and Tivanski, A. V.: Solid, Semisolid, and Liquid
Phase States of Individual Submicrometer Particles Directly Probed Using
Atomic Force Microscopy, Anal. Chem., 89, 12720–12726,
https://doi.org/10.1021/acs.analchem.7b02755, 2017b.
Lee, H. D.,
Kaluarachchi, C. P.,
Hasenecz, E. S.,
Zhu, Z.,
Popa, E.,
Stone, E. A., and
Tivanski, A. V.:
Data from: Dry versus Wet? Implication on Aerosol Impaction and Organic Volume Fraction. In Center for Aerosol Impacts on Chemistry of the Environment
(CAICE), UC San Diego Library Digital Collections,
https://doi.org/10.6075/J0GH9G3H, 2019.
Lu, J. W., Rickards, A. M. J., Walker, J. S., Knox, K. J., Miles, R. E. H.,
Reid, J. P., and Signorell, R.: Timescales of water transport in viscous
aerosol: measurements on sub-micron particles and dependence on conditioning
history, Phys. Chem. Chem. Phys., 16, 9819–9830, https://doi.org/10.1039/c3cp54233e, 2014.
Morris, H., Grassian, V., and Tivanski, A.: Humidity-dependent surface
tension measurements of individual inorganic and organic submicrometre
liquid particles, Chem. Sci., 6, 3242–3247, https://doi.org/10.1039/c4sc03716b, 2015.
Morris, H. S., Estillore, A. D., Laskina, O., Grassian, V. H., and Tivanski,
A. V.: Quantifying the Hygroscopic Growth of Individual Submicrometer
Particles with Atomic Force Microscopy, Anal. Chem., 88, 3647–3654,
https://doi.org/10.1021/acs.analchem.5b04349, 2016.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., and Putaud, J. P.: Biogenically driven
organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G.,
Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M. C.,
Seinfeld, J. H., and Dowd, C. O.: Surface tension prevails over solute
effect in organic-influenced cloud droplet activation, Nature, 546, 637–641,
https://doi.org/10.1038/nature22806, 2017.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,
Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M.
D., DeMott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J.
H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G.
C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan,
C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco, T.
L., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L., Mui, W.,
Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G., Sullivan, R. C.,
and Zhao, D. F.: Bringing the ocean into the laboratory to probe the
chemical complexity of sea spray aerosol, P. Natl. Acad. Sci. USA, 110,
7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Quinn, P. K., Bates, T. S., Schulz, K. S., Coffman, D. J., Frossard, A. A.,
Russell, L. M., Keene, W. C., and Kieber, D. J.: Contribution of sea surface
carbon pool to organic matter enrichment in sea spray aerosol, Nat. Geosci.,
7, 228–232, https://doi.org/10.1038/Ngeo2092, 2014.
Rathnayake, C. M., Metwali, N., Baker, Z., Jayarathne, T., Kostle, P. A.,
Thorne, P. S., O'Shaughnessy, P. T., and Stone, E. A.: Urban enhancement of
PM10 bioaerosol tracers relative to background locations in the Midwestern
United States, J. Geophys. Res.-Atmos., 121, 5071–5089, https://doi.org/10.1002/2015jd024538,
2016.
Ruehl, C. R. and Wilson, K. R.: Surface Organic Mono layers Control the
Hygroscopic Growth of Submicrometer Particles at High Relative Humidity, J.
Phys. Chem. A, 118, 3952–3966, https://doi.org/10.1021/jp502844g, 2014.
Ruehl, C. R., Chuang, P. Y., and Nenes, A.: Aerosol hygroscopicity at high (99 to 100 %) relative humidities,
Atmos. Chem. Phys., 10, 1329–1344, https://doi.org/10.5194/acp-10-1329-2010, 2010.
Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An interfacial mechanism for
cloud droplet formation on organic aerosols, Science, 351, 1447–1450, 2016.
Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.
S.: Carbohydrate-like composition of submicron atmospheric particles and
their production from ocean bubble bursting, P. Natl. Acad. Sci. USA, 107,
6652–6657, https://doi.org/10.1073/pnas.0908905107, 2010.
Santos, S., Barcons, V., Christenson, H. K., Font, J., and Thomson, N. H.:
The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications
for Heights of Nano-Scale Features, Plos One, 6, e23821,
https://doi.org/10.1371/journal.pone.0023821, 2011.
Schill, G. P., De Haan, D. O., and Tolbert, M. A.: Heterogeneous Ice
Nucleation on Simulated Secondary Organic Aerosol, Environ. Sci. Technol., 48,
1675–1682, https://doi.org/10.1021/es4046428, 2014.
Schill, S. R., Collins, D. B., Lee, C., Morris, H. S., Novak, G. A.,
Prather, K. A., Quinn, P. K., Sultana, C. M., Tivanski, A. V., Zimmermann,
K., Cappa, C. D., and Bertram, T. H.: The Impact of Aerosol Particle Mixing
State on the Hygroscopicity of Sea Spray Aerosol, Acs Central Sci., 1,
132–141, https://doi.org/10.1021/acscentsci.5b00174, 2015.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas,
I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K.
A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol-cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113, 2016.
Song, M., Marcolli, C., Krieger, U. K., Zuend, A., and Peter, T.:
Liquid-liquid phase separation in aerosol particles: Dependence on O:C,
organic functionalities, and compositional complexity, Geophys. Res. Lett., 39,
L19801, https://doi.org/10.1029/2012gl052807, 2012.
Song, Y. C., Haddrell, A. E., Bzdek, B. R., Reid, J. P., Barman, T.,
Topping, D. O., Percival, C., and Cai, C.: Measurements and Predictions of
Binary Component Aerosol Particle Viscosity, J. Phys. Chem. A, 120, 8123–8137,
https://doi.org/10.1021/acs.jpca.6b07835, 2016.
Vignati, E., Facchini, M. C., Rinaldi, M., Scannell, C., Ceburnis, D.,
Sciare, J., Kanakidou, M., Myriokefalitakis, S., Dentener, F., and O'Dowd,
C. D.: Global scale emission and distribution of sea-spray aerosol: Sea-salt
and organic enrichment, Atmos. Environ., 44, 670–677, 2010.
Wang, X. F., Deane, G. B., Moore, K. A., Ryder, O. S., Stokes, M. D., Beall,
C. M., Collins, D. B., Santander, M. V., Burrows, S. M., Sultana, C. M., and
Prather, K. A.: The role of jet and film drops in controlling the mixing
state of submicron sea spray aerosol particles, P. Natl. Acad. Sci. USA, 114,
6978–6983, https://doi.org/10.1073/pnas.1702420114, 2017.
You, Y., Renbaum-Wolff, L., and Bertram, A. K.: Liquid-liquid phase separation in particles containing organics mixed with
ammonium sulfate, ammonium bisulfate, ammonium nitrate or sodium chloride, Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, 2013.
You, Y., Smith, M. L., Song, M. J., Martin, S. T., and Bertram, A. K.:
Liquid-liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem., 33,
43–77, https://doi.org/10.1080/0144235x.2014.890786, 2014.
Short summary
Dry and wet aerosol deposition modes are commonly used to collect particles on a solid substrate for experiments. We demonstrate, using single-particle microscopy and bulk methods, how the substrate-deposited particles with two components can yield the same core–shell morphology but different shell thicknesses depending on the deposition method. Thus we strongly advise future works to use wet deposition when possible to obtain accurate assessment of the single-particle organic volume fraction.
Dry and wet aerosol deposition modes are commonly used to collect particles on a solid substrate...