Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2485-2019
https://doi.org/10.5194/amt-12-2485-2019
Research article
 | 
23 Apr 2019
Research article |  | 23 Apr 2019

FRESCO-B: a fast cloud retrieval algorithm using oxygen B-band measurements from GOME-2

Marine Desmons, Ping Wang, Piet Stammes, and L. Gijsbert Tilstra

Related authors

Improved consistency in solar-induced fluorescence retrievals from GOME-2A with the SIFTER v3 algorithm
Juliëtte C. S. Anema, K. Folkert Boersma, Lieuwe G. Tilstra, Olaf N. E. Tuinder, and Willem W. Verstraeten
EGUsphere, https://doi.org/10.5194/egusphere-2024-2666,https://doi.org/10.5194/egusphere-2024-2666, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024,https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024,https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
Calm ocean, stormy sea: Atmospheric and oceanographic observations of the Atlantic during the ARC ship campaign
Laura Köhler, Julia Windmiller, Dariusz Baranowski, Michał Brennek, Michał Ciuryło, Lennéa Hayo, Daniel Kepski, Stefan Kinne, Beata Latos, Bertrand Lobo, Tobias Marke, Timo Nischik, Daria Paul, Piet Stammes, Artur Szkop, and Olaf Tuinder
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-275,https://doi.org/10.5194/essd-2024-275, 2024
Preprint under review for ESSD
Short summary
Aeolus Lidar Surface Returns (LSR) at 355 nm as a new Aeolus L2A Phase-F product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1926,https://doi.org/10.5194/egusphere-2024-1926, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
The Ice Cloud Imager: retrieval of frozen water column properties
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024,https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Supercooled liquid water cloud classification using lidar backscatter peak properties
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024,https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Marine cloud base height retrieval from MODIS cloud properties using machine learning
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024,https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024,https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary

Cited articles

Andrews, T., Gregory, J., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models, Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012. a
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004. a
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. a
De Haan, J. F., Bosma, P. B, and Hovenier, J. W.: The adding method for multiple scattering calculations of polarized light, Astron. Astrophys., 183, 371–391, 1987. a
Desmons, M., Ferlay, N., Parol, F., Mcharek, L., and Vanbauce, C.: Improved information about the vertical location and extent of monolayer clouds from POLDER3 measurements in the oxygen A-band, Atmos. Meas. Tech., 6, 2221–2238, https://doi.org/10.5194/amt-6-2221-2013, 2013. a
Download
Short summary
The FRESCO algorithm is a simple, fast and robust algorithm used to retrieve cloud information during operational satellite data processing. FRESCO retrieves effective cloud fraction and cloud pressure from measurements in the oxygen A band around 761 nm. In this paper, we propose a new version of the algorithm, called FRESCO-B, which is based on measurements in the oxygen B band around 687 nm. Such a method leads to more accurate retrievals for vegetated surfaces.