Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3629-2019
https://doi.org/10.5194/amt-12-3629-2019
Research article
 | 
04 Jul 2019
Research article |  | 04 Jul 2019

Correlated observation error models for assimilating all-sky infrared radiances

Alan J. Geer

Related authors

Assessment and application of melting layer simulations for spaceborne radars within the RTTOV-SCATT v13.1 model
Rohit Mangla, Mary Borderies, Philippe Chambon, Alan Geer, and James Hocking
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-131,https://doi.org/10.5194/amt-2024-131, 2024
Revised manuscript under review for AMT
Short summary
Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021,https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021,https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021,https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud
Alan J. Geer, Stefano Migliorini, and Marco Matricardi
Atmos. Meas. Tech., 12, 4903–4929, https://doi.org/10.5194/amt-12-4903-2019,https://doi.org/10.5194/amt-12-4903-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025,https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary

Cited articles

Andersson, E. and Järvinen, H.: Variational quality control, Q. J. Roy. Meteorol. Soc., 125, 697–722, https://doi.org/10.1002/qj.49712555416, 1999. a, b, c, d, e, f, g
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteorol. Soc., 133, 631–642, 2007. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances, Q. J. Roy. Meteorol. Soc., 134, 1951–1970, 2008a. a
Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics, Q. J. Roy. Meteorol. Soc., 134, 1971–1996, 2008b. a
Bonavita, M., Isaksen, L., and Hólm, E.: On the use of EDA background error variances in the ECMWF 4D-Var, Q. J. Roy. Meteorol. Soc., 138, 1540–1559, https://doi.org/10.1002/qj.1899, 2012. a, b
Download
Short summary
Using more satellite data in cloudy areas helps improve weather forecasts, but all-sky assimilation is still tricky, particularly for infrared data. To allow the use of hyperspectral infrared sounder radiances in all-sky conditions, an error model is developed that, in the presence of cloud, broadens the correlations between channels and increases error variances. After fixing problems of gravity wave and bias amplification, the results of all-sky assimilation trials were promising.