Articles | Volume 12, issue 1
Atmos. Meas. Tech., 12, 389–403, 2019
Atmos. Meas. Tech., 12, 389–403, 2019

Research article 18 Jan 2019

Research article | 18 Jan 2019

A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band

Nawo Eguchi and Yukio Yoshida

Related authors

Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019
Guangyu Liu, Toshihiko Hirooka, Nawo Eguchi, and Kirstin Krüger
Atmos. Chem. Phys. Discuss.,,, 2021
Preprint under review for ACP
Short summary
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669,,, 2019
Short summary
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625,,, 2017
Short summary
The role of convective overshooting clouds in tropical stratosphere–troposphere dynamical coupling
K. Kodera, B. M. Funatsu, C. Claud, and N. Eguchi
Atmos. Chem. Phys., 15, 6767–6774,,, 2015
Short summary
A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming
N. Eguchi, K. Kodera, and T. Nasuno
Atmos. Chem. Phys., 15, 297–304,,, 2015
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395,,, 2021
Short summary
Cloud height measurement by a network of all-sky imagers
Niklas Benedikt Blum, Bijan Nouri, Stefan Wilbert, Thomas Schmidt, Ontje Lünsdorf, Jonas Stührenberg, Detlev Heinemann, Andreas Kazantzidis, and Robert Pitz-Paal
Atmos. Meas. Tech., 14, 5199–5224,,, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126,,, 2021
Short summary
Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047,,, 2021
Short summary
Estimating the optical extinction of liquid water clouds in the cloud base region
Karolina Sarna, David P. Donovan, and Herman W. J. Russchenberg
Atmos. Meas. Tech., 14, 4959–4970,,, 2021
Short summary

Cited articles

Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. a
Dessler, A. E. and Yang, P.: The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data, J. Climate, 16, 1241–1247,<1241:TDOTTC>2.0.CO;2, 2003. a
Eguchi, N. and Kodera, K.: Impacts of Stratospheric Sudden Warming Event on Tropical Clouds and Moisture Fields in the TTL: A Case Study, SOLA, 6, 137–140,, 2010. a, b
Eguchi, N., Yokota, T., and Inoue, G.: Characteristics of cirrus clouds from ICESat/GLAS observations, Geophys. Res. Lett., 34, L09810,, 2007. a, b, c
Eguchi, N., Kodera, K., and Nasuno, T.: A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming, Atmos. Chem. Phys., 15, 297–304,, 2015. a, b
Short summary
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor saturated channels (2  μm) of the solar reflected spectrum observed by the TANSO-FTS on board GOSAT. The clouds detected by this method are optically relatively thin (0.01 or less) and located at high altitudes. Approximately 85  % of the results from this method for clouds with a cloud-top altitude above 5  km agree with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification.