Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-389-2019
https://doi.org/10.5194/amt-12-389-2019
Research article
 | 
18 Jan 2019
Research article |  | 18 Jan 2019

A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band

Nawo Eguchi and Yukio Yoshida

Related authors

Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019
Guangyu Liu, Toshihiko Hirooka, Nawo Eguchi, and Kirstin Krüger
Atmos. Chem. Phys., 22, 3493–3505, https://doi.org/10.5194/acp-22-3493-2022,https://doi.org/10.5194/acp-22-3493-2022, 2022
Short summary
Carbon dioxide variations in the upper troposphere and lower stratosphere from GOSAT TANSO-FTS TIR profile data
Akihiro Honda, Nawo Eguchi, and Naoko Saitoh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-46,https://doi.org/10.5194/acp-2022-46, 2022
Revised manuscript not accepted
Short summary
Implication of tropical lower stratospheric cooling in recent trends in tropical circulation and deep convective activity
Kunihiko Kodera, Nawo Eguchi, Rei Ueyama, Yuhji Kuroda, Chiaki Kobayashi, Beatriz M. Funatsu, and Chantal Claud
Atmos. Chem. Phys., 19, 2655–2669, https://doi.org/10.5194/acp-19-2655-2019,https://doi.org/10.5194/acp-19-2655-2019, 2019
Short summary
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017,https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
The role of convective overshooting clouds in tropical stratosphere–troposphere dynamical coupling
K. Kodera, B. M. Funatsu, C. Claud, and N. Eguchi
Atmos. Chem. Phys., 15, 6767–6774, https://doi.org/10.5194/acp-15-6767-2015,https://doi.org/10.5194/acp-15-6767-2015, 2015
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024,https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024,https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024,https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Contrail altitude estimation using GOES-16 ABI data and deep learning
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024,https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary

Cited articles

Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. a
Dessler, A. E. and Yang, P.: The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data, J. Climate, 16, 1241–1247, https://doi.org/10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2, 2003. a
Eguchi, N. and Kodera, K.: Impacts of Stratospheric Sudden Warming Event on Tropical Clouds and Moisture Fields in the TTL: A Case Study, SOLA, 6, 137–140, https://doi.org/10.2151/sola.2010-035, 2010. a, b
Eguchi, N., Yokota, T., and Inoue, G.: Characteristics of cirrus clouds from ICESat/GLAS observations, Geophys. Res. Lett., 34, L09810, https://doi.org/10.1029/2007GL029529, 2007. a, b, c
Eguchi, N., Kodera, K., and Nasuno, T.: A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming, Atmos. Chem. Phys., 15, 297–304, https://doi.org/10.5194/acp-15-297-2015, 2015. a, b
Download
Short summary
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor saturated channels (2  μm) of the solar reflected spectrum observed by the TANSO-FTS on board GOSAT. The clouds detected by this method are optically relatively thin (0.01 or less) and located at high altitudes. Approximately 85  % of the results from this method for clouds with a cloud-top altitude above 5  km agree with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification.