Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-389-2019
https://doi.org/10.5194/amt-12-389-2019
Research article
 | 
18 Jan 2019
Research article |  | 18 Jan 2019

A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band

Nawo Eguchi and Yukio Yoshida

Related authors

Dynamical evolution of a minor sudden stratospheric warming in the Southern Hemisphere in 2019
Guangyu Liu, Toshihiko Hirooka, Nawo Eguchi, and Kirstin Krüger
Atmos. Chem. Phys., 22, 3493–3505, https://doi.org/10.5194/acp-22-3493-2022,https://doi.org/10.5194/acp-22-3493-2022, 2022
Short summary
Carbon dioxide variations in the upper troposphere and lower stratosphere from GOSAT TANSO-FTS TIR profile data
Akihiro Honda, Nawo Eguchi, and Naoko Saitoh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-46,https://doi.org/10.5194/acp-2022-46, 2022
Revised manuscript not accepted
Short summary

Cited articles

Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. a
Dessler, A. E. and Yang, P.: The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data, J. Climate, 16, 1241–1247, https://doi.org/10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2, 2003. a
Eguchi, N. and Kodera, K.: Impacts of Stratospheric Sudden Warming Event on Tropical Clouds and Moisture Fields in the TTL: A Case Study, SOLA, 6, 137–140, https://doi.org/10.2151/sola.2010-035, 2010. a, b
Eguchi, N., Yokota, T., and Inoue, G.: Characteristics of cirrus clouds from ICESat/GLAS observations, Geophys. Res. Lett., 34, L09810, https://doi.org/10.1029/2007GL029529, 2007. a, b, c
Eguchi, N., Kodera, K., and Nasuno, T.: A global non-hydrostatic model study of a downward coupling through the tropical tropopause layer during a stratospheric sudden warming, Atmos. Chem. Phys., 15, 297–304, https://doi.org/10.5194/acp-15-297-2015, 2015. a, b
Download
Short summary
A detection method for high-level cloud, such as ice clouds, is developed using the water vapor saturated channels (2  μm) of the solar reflected spectrum observed by the TANSO-FTS on board GOSAT. The clouds detected by this method are optically relatively thin (0.01 or less) and located at high altitudes. Approximately 85  % of the results from this method for clouds with a cloud-top altitude above 5  km agree with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud classification.
Share