Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-4931-2019
https://doi.org/10.5194/amt-12-4931-2019
Research article
 | 
11 Sep 2019
Research article |  | 11 Sep 2019

Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the Eastern North Atlantic ARM observatory

Katia Lamer, Bernat Puigdomènech Treserras, Zeen Zhu, Bradley Isom, Nitin Bharadwaj, and Pavlos Kollias

Related authors

Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
Assessing Arctic low-level clouds and precipitation from above – a radar perspective
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023,https://doi.org/10.5194/amt-16-4081-2023, 2023
Short summary
Multifrequency radar observations of clouds and precipitation including the G-band
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021,https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary
Mind the gap – Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars
Alessandro Battaglia, Pavlos Kollias, Ranvir Dhillon, Katia Lamer, Marat Khairoutdinov, and Daniel Watters
Atmos. Meas. Tech., 13, 4865–4883, https://doi.org/10.5194/amt-13-4865-2020,https://doi.org/10.5194/amt-13-4865-2020, 2020
Short summary
Mind the gap – Part 1: Accurately locating warm marine boundary layer clouds and precipitation using spaceborne radars
Katia Lamer, Pavlos Kollias, Alessandro Battaglia, and Simon Preval
Atmos. Meas. Tech., 13, 2363–2379, https://doi.org/10.5194/amt-13-2363-2020,https://doi.org/10.5194/amt-13-2363-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Forward operator for polarimetric radio occultation measurements
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024,https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024,https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024,https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024,https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Radar and environment-based hail damage estimates using machine learning
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024,https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary

Cited articles

Adler, R. F., Wang, J.-J., Gu, G., and Huffman, G. J.: A ten-year tropical rainfall climatology based on a composite of TRMM products, J. Meteorol. Soc. Jpn., 87, 281–293, 2009. 
Ahlgrimm, M. and Forbes, R.: Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores, Month. Weather Rev., 142, 668–685, 2014. 
Alku, L., Moisseev, D., Aittomäki, T., and Chandrasekar, V.: Identification and suppression of nonmeteorological echoes using spectral polarimetric processing, IEEE T. Geosci. Remote, 53, 3628–3638, 2015. 
Comstock, K. K., Wood, R., Yuter, S. E., and Bretherton, C. S.: Reflectivity and rain rate in and below drizzling stratocumulus, Q. J. Roy. Meteor. Soc., 130, 2891–2918, 2004. 
Download
Short summary
This article describes the three newly deployed second-generation radar of the Atmospheric Radiation Measurement program. Techniques to retrieve precipitation rate from their measurements are presented: noise and clutter filtering, gas and liquid attenuation correction, and radar reflectivity calibration. Rain rate for a 40 km radius domain around Graciosa estimated from all three radar differ, which highlights the need to consider sensor capabilities when interpreting radar measurements.