Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5927-2019
https://doi.org/10.5194/amt-12-5927-2019
Research article
 | 
11 Nov 2019
Research article |  | 11 Nov 2019

Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe

Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov

Related authors

Retrieval of the land-sea contrast of cloud liquid water path by applying a physical inversion algorithm to combined zenith and off-zenith ground-based microwave measurements
Vladimir Kostsov, Dmitry Ionov, and Anke Kniffka
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-415,https://doi.org/10.5194/amt-2021-415, 2022
Revised manuscript not accepted
Short summary
The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling
Dmitry V. Ionov, Maria V. Makarova, Frank Hase, Stefani C. Foka, Vladimir S. Kostsov, Carlos Alberti, Thomas Blumenstock, Thorsten Warneke, and Yana A. Virolainen
Atmos. Chem. Phys., 21, 10939–10963, https://doi.org/10.5194/acp-21-10939-2021,https://doi.org/10.5194/acp-21-10939-2021, 2021
Short summary
Inter-annual, seasonal and diurnal features of the cloud liquid water path over the land surface and various water bodies in Northern Europe as obtained from the satellite observations by the SEVIRI instrument in 2011–2017
Vladimir S. Kostsov, Anke Kniffka, and Dmitry V. Ionov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-387,https://doi.org/10.5194/acp-2021-387, 2021
Revised manuscript not accepted
Short summary
Emission Monitoring Mobile Experiment (EMME): an overview and first results of the St. Petersburg megacity campaign 2019
Maria V. Makarova, Carlos Alberti, Dmitry V. Ionov, Frank Hase, Stefani C. Foka, Thomas Blumenstock, Thorsten Warneke, Yana A. Virolainen, Vladimir S. Kostsov, Matthias Frey, Anatoly V. Poberovskii, Yuri M. Timofeyev, Nina N. Paramonova, Kristina A. Volkova, Nikita A. Zaitsev, Egor Y. Biryukov, Sergey I. Osipov, Boris K. Makarov, Alexander V. Polyakov, Viktor M. Ivakhov, Hamud Kh. Imhasin, and Eugene F. Mikhailov
Atmos. Meas. Tech., 14, 1047–1073, https://doi.org/10.5194/amt-14-1047-2021,https://doi.org/10.5194/amt-14-1047-2021, 2021
Short summary
Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: feasibility study
Vladimir S. Kostsov, Dmitry V. Ionov, and Anke Kniffka
Atmos. Meas. Tech., 13, 4565–4587, https://doi.org/10.5194/amt-13-4565-2020,https://doi.org/10.5194/amt-13-4565-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024,https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024,https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2711,https://doi.org/10.5194/egusphere-2024-2711, 2024
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2198,https://doi.org/10.5194/egusphere-2024-2198, 2024
Short summary

Cited articles

Dong, X., Minnis, P., Mace, G., Smith, W. L., Poellot, M., Marchand, R. T., and Rapp, A. D.: Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM cloud IOP, J. Atmos. Sci., 59, 3265–3284, 2002. 
EUMETSAT CM SAF Climate Monitoring, https://www.cmsaf.eu, last access: 15 May 2019. 
Greuell, W. and Roebeling, R. A.: Toward a Standard Procedure for Validation of Satellite-Derived Cloud Liquid Water Path: A Study with SEVIRI Data, J. Appl. Meteorol. Clim., 48, 1575–1590, https://doi.org/10.1175/2009JAMC2112.1, 2009. 
GSHHG: A Global Self-consistent, Hierarchical, High-resolution Geography Database, Version 2.3.7 Released June 15, 2017, available at: https://www.soest.hawaii.edu/pwessel/gshhg/, last access: 15 July 2019. 
Jolivet, D. and Feijt, A. J.: Quantification of the accuracy of liquid water path fields derived from NOAA 16 advanced very high resolution radiometer over three ground stations using microwave radiometers, J. Geophys. Res., 110, D11204, https://doi.org/10.1029/2004JD005205, 2005. 
Download
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.