Articles | Volume 12, issue 11
Atmos. Meas. Tech., 12, 6017–6036, 2019
https://doi.org/10.5194/amt-12-6017-2019
Atmos. Meas. Tech., 12, 6017–6036, 2019
https://doi.org/10.5194/amt-12-6017-2019
Research article
20 Nov 2019
Research article | 20 Nov 2019

Neural network for aerosol retrieval from hyperspectral imagery

Steffen Mauceri et al.

Related authors

Correcting 3D cloud effects in XCO2 retrievals from OCO-2
Steffen Mauceri, Steven Massie, and Sebastian Schmidt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-202,https://doi.org/10.5194/amt-2022-202, 2022
Preprint under review for AMT
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022,https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022,https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022,https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022,https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary
Algorithm for vertical distribution of boundary layer aerosol components in remote sensing data
Futing Wang, Ting Yang, Zifa Wang, Haibo Wang, and Xi Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-165,https://doi.org/10.5194/amt-2022-165, 2022
Revised manuscript accepted for AMT
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., and Kudlur, M.: Tensorflow: a system for large-scale machine learning, OSDI, 16, 265–283, 2016. 
Adler-Golden, S. M., Matthew, M. W., Bernstein, L. S., Levine, R. Y., Berk, A., Richtsmeier, S. C., Acharya, P. K., Anderson, G. P., Felde, J. W., Gardner, J. A., and Hoke, M. L.: Atmospheric correction for shortwave spectral imagery based on MODTRAN4, P. Soc. Photo-Opt. Ins., 3753, 61–70, 1999. 
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown Carbon Spheres in East Asian Outflow and Their Optical Properties, Science, 321, 833–836, 2008. 
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.: The ASTER spectral library version 2.0, Remote Sens. Environ., 113, 711–715, 2009. 
Download
Short summary
Aerosols are fine particles that are suspended in Earth’s atmosphere. A better understanding of aerosols is important to lower uncertainties in climate predictions. We propose measuring aerosols from satellites and airplanes equipped with hyperspectral cameras using an artificial neural network, a form of machine learning. We applied our neural network to hyperspectral observations from a recent airplane flight over India and find general agreement with independent aerosol measurements.