Articles | Volume 13, issue 1
Atmos. Meas. Tech., 13, 1–11, 2020
https://doi.org/10.5194/amt-13-1-2020
Atmos. Meas. Tech., 13, 1–11, 2020
https://doi.org/10.5194/amt-13-1-2020
Research article
02 Jan 2020
Research article | 02 Jan 2020

Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar

Juan Huo et al.

Related authors

Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022,https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Retrievals of Precipitable Water Vapor and Aerosol Optical Depth from direct sun measurements with EKO MS711 and MS712 Spectroradiometers
Congcong Qiao, Song Liu, Juan Huo, Xihan Mu, Ping Wang, Shengjie Jia, Xuehua Fan, and Minzheng Duan
EGUsphere, https://doi.org/10.5194/egusphere-2022-315,https://doi.org/10.5194/egusphere-2022-315, 2022
Short summary
Water vapor estimation based on 1-year data of E-band millimeter wave link in North China
Siming Zheng, Juan Huo, Wenbing Cai, Yinhui Zhang, Peng Li, Gaoyuan Zhang, Baofeng Ji, Jiafeng Zhou, and Congzheng Han
Atmos. Meas. Tech., 15, 1675–1687, https://doi.org/10.5194/amt-15-1675-2022,https://doi.org/10.5194/amt-15-1675-2022, 2022
Short summary
Properties of ice cloud over Beijing from surface Ka-band radar observations during 2014–2017
Juan Huo, Yufang Tian, Xue Wu, Congzheng Han, Bo Liu, Yongheng Bi, Shu Duan, and Daren Lyu
Atmos. Chem. Phys., 20, 14377–14392, https://doi.org/10.5194/acp-20-14377-2020,https://doi.org/10.5194/acp-20-14377-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Impact of the revisit frequency on cloud climatology for CALIPSO, EarthCARE, Aeolus, and ICESat-2 satellite lidar missions
Andrzej Z. Kotarba
Atmos. Meas. Tech., 15, 4307–4322, https://doi.org/10.5194/amt-15-4307-2022,https://doi.org/10.5194/amt-15-4307-2022, 2022
Short summary
The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022,https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Horizontal geometry of trade wind cumuli – aircraft observations from a shortwave infrared imager versus a radar profiler
Henning Dorff, Heike Konow, and Felix Ament
Atmos. Meas. Tech., 15, 3641–3661, https://doi.org/10.5194/amt-15-3641-2022,https://doi.org/10.5194/amt-15-3641-2022, 2022
Short summary
Evaluating the consistency and continuity of pixel-scale cloud property data records from Aqua and SNPP (Suomi National Polar-orbiting Partnership)
Qing Yue, Eric J. Fetzer, Likun Wang, Brian H. Kahn, Nadia Smith, John M. Blaisdell, Kerry G. Meyer, Mathias Schreier, Bjorn Lambrigtsen, and Irina Tkatcheva
Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022,https://doi.org/10.5194/amt-15-2099-2022, 2022
Short summary
Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data
Pradeep Khatri, Tadahiro Hayasaka, Hitoshi Irie, Husi Letu, Takashi Y. Nakajima, Hiroshi Ishimoto, and Tamio Takamura
Atmos. Meas. Tech., 15, 1967–1982, https://doi.org/10.5194/amt-15-1967-2022,https://doi.org/10.5194/amt-15-1967-2022, 2022
Short summary

Cited articles

Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998. 
Arakawa, A.: The cumulus parameterization problem: Past, present, and future, J. Climate, 17, 2493–2525, 2004. 
Atlas, D.: The estimation of cloud parameters by radar, J. Meteor., 11, 309–317, 1954. 
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS cloud-top property refinements for Collection 6, J. Appl. Meteor., 51, 1145–1163, 2012. 
Download
Short summary
Cloud top height (CTH) is one of the important cloud parameters providing information about the vertical structure of cloud water content. To better understand the accuracy of CTH derived from passive satellite data, 2 years of ground-based Ka-band radar measurements are compared with CTH inferred from Terra/Aqua MODIS and Himawari AHI. It is found that MODIS and AHI underestimate CTH relative to radar by −1.10 km. Both MODIS and AHI CTH retrieval accuracy depend strongly on cloud depth.