Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 6
Atmos. Meas. Tech., 13, 3263–3275, 2020
https://doi.org/10.5194/amt-13-3263-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 3263–3275, 2020
https://doi.org/10.5194/amt-13-3263-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Jun 2020

Research article | 19 Jun 2020

Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products

Benjamin Marchant et al.

Related authors

MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP
Benjamin Marchant, Steven Platnick, Kerry Meyer, G. Thomas Arnold, and Jérôme Riedi
Atmos. Meas. Tech., 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016,https://doi.org/10.5194/amt-9-1587-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Calibration of global MODIS cloud amount using CALIOP cloud profiles
Andrzej Z. Kotarba
Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020,https://doi.org/10.5194/amt-13-4995-2020, 2020
Short summary
An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans
Alexis Hunzinger, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble, and Alyssa Matthews
Atmos. Meas. Tech., 13, 3147–3166, https://doi.org/10.5194/amt-13-3147-2020,https://doi.org/10.5194/amt-13-3147-2020, 2020
Short summary
Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech., 13, 2965–2977, https://doi.org/10.5194/amt-13-2965-2020,https://doi.org/10.5194/amt-13-2965-2020, 2020
Short summary
Microwave and submillimeter wave scattering of oriented ice particles
Manfred Brath, Robin Ekelund, Patrick Eriksson, Oliver Lemke, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020,https://doi.org/10.5194/amt-13-2309-2020, 2020
Short summary
Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020,https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary

Cited articles

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Climatol., 51, 1145–1163, https://doi.org/10.1175/jamc-d-11-0203.1, 2012. 
Chang, F.-L. and Li, Z.: A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties, J. Atmos. Sci., 62, 3993–4009, https://doi.org/10.1175/jas3578.1, 2005.  
Desmons, M., Ferlay, N., Parol, F., Riédi, J., and Thieuleux, F.: A Global Multilayer Cloud Identification with POLDER/PARASOL, J. Appl. Meteorol. Clim., 56, 1121–1139, https://doi.org/10.1175/jamc-d-16-0159.1, 2017. 
Heidinger, A. K. and Pavolonis, M. J.: Global Daytime Distribution of Overlapping Cirrus Cloud from NOAA's Advanced Very High-Resolution Radiometer, J. Climate, 18, 4772–4784, https://doi.org/10.1175/jcli3535.1, 2005. 
Jin, Y. and Rossow, W. B.: Detection of cirrus overlapping low-level clouds, J. Geophys. Res.-Atmos., 102, 1727–1737, https://doi.org/10.1029/96jd02996, 1997. 
Publications Copernicus
Download
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with other instruments.
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the...
Citation