Articles | Volume 13, issue 6
https://doi.org/10.5194/amt-13-3263-2020
https://doi.org/10.5194/amt-13-3263-2020
Research article
 | 
19 Jun 2020
Research article |  | 19 Jun 2020

Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products

Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind

Related authors

MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP
Benjamin Marchant, Steven Platnick, Kerry Meyer, G. Thomas Arnold, and Jérôme Riedi
Atmos. Meas. Tech., 9, 1587–1599, https://doi.org/10.5194/amt-9-1587-2016,https://doi.org/10.5194/amt-9-1587-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024,https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024,https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024,https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2024-2021,https://doi.org/10.5194/egusphere-2024-2021, 2024
Short summary
Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework
Ethel Villeneuve, Philippe Chambon, and Nadia Fourrié
Atmos. Meas. Tech., 17, 3567–3582, https://doi.org/10.5194/amt-17-3567-2024,https://doi.org/10.5194/amt-17-3567-2024, 2024
Short summary

Cited articles

Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Climatol., 51, 1145–1163, https://doi.org/10.1175/jamc-d-11-0203.1, 2012. 
Chang, F.-L. and Li, Z.: A New Method for Detection of Cirrus Overlapping Water Clouds and Determination of Their Optical Properties, J. Atmos. Sci., 62, 3993–4009, https://doi.org/10.1175/jas3578.1, 2005.  
Desmons, M., Ferlay, N., Parol, F., Riédi, J., and Thieuleux, F.: A Global Multilayer Cloud Identification with POLDER/PARASOL, J. Appl. Meteorol. Clim., 56, 1121–1139, https://doi.org/10.1175/jamc-d-16-0159.1, 2017. 
Heidinger, A. K. and Pavolonis, M. J.: Global Daytime Distribution of Overlapping Cirrus Cloud from NOAA's Advanced Very High-Resolution Radiometer, J. Climate, 18, 4772–4784, https://doi.org/10.1175/jcli3535.1, 2005. 
Jin, Y. and Rossow, W. B.: Detection of cirrus overlapping low-level clouds, J. Geophys. Res.-Atmos., 102, 1727–1737, https://doi.org/10.1029/96jd02996, 1997. 
Download
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with other instruments.