Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6933-2020
https://doi.org/10.5194/amt-13-6933-2020
Research article
 | 
18 Dec 2020
Research article |  | 18 Dec 2020

Microwave single-scattering properties of non-spheroidal raindrops

Robin Ekelund, Patrick Eriksson, and Michael Kahnert

Related authors

Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Microwave and submillimeter wave scattering of oriented ice particles
Manfred Brath, Robin Ekelund, Patrick Eriksson, Oliver Lemke, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020,https://doi.org/10.5194/amt-13-2309-2020, 2020
Short summary
Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020,https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Airborne validation of radiative transfer modelling of ice clouds at millimetre and sub-millimetre wavelengths
Stuart Fox, Jana Mendrok, Patrick Eriksson, Robin Ekelund, Sebastian J. O'Shea, Keith N. Bower, Anthony J. Baran, R. Chawn Harlow, and Juliet C. Pickering
Atmos. Meas. Tech., 12, 1599–1617, https://doi.org/10.5194/amt-12-1599-2019,https://doi.org/10.5194/amt-12-1599-2019, 2019
Short summary
A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths
Patrick Eriksson, Robin Ekelund, Jana Mendrok, Manfred Brath, Oliver Lemke, and Stefan A. Buehler
Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018,https://doi.org/10.5194/essd-10-1301-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024,https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Bayesian cloud-top phase determination for Meteosat Second Generation
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024,https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024,https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024,https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024,https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary

Cited articles

Abel, S. J. and Boutle, I. A.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. Roy. Meteor. Soc., 138, 2151–2162, https://doi.org/10.1002/qj.1949, 2012. a
Battaglia, A., Saavedra, P., Simmer, C., and Rose, T.: Rain Observations by a Multifrequency Dual-Polarized Radiometer, IEEE Geosci. Remote Sens. Let., 6, 354–358, https://doi.org/10.1109/LGRS.2009.2013484, 2009. a, b
Battaglia, A., Saavedra, P., Rose, T., Simmer, C., Battaglia, A., Saavedra, P., Rose, T., and Simmer, C.: Characterization of Precipitating Clouds by Ground-Based Measurements with the Triple-Frequency Polarized Microwave Radiometer ADMIRARI, J. Appl. Meteorol. Clim., 49, 394–414, https://doi.org/10.1175/2009JAMC2340.1, 2010. a
Blanchard, D. C. and Spencer, A. T.: Experiments on the Generation of Raindrop-Size Distributions by Drop Breakup, J. Atmos. Sci., 27, 101–108, https://doi.org/10.1175/1520-0469(1970)027<0101:EOTGOR>2.0.CO;2, 1970. a, b
Brandes, E. A., Zhang, G., and Vivekanandan, J.: Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment, J. Appl. Meteorol., 41, 674–685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2, 2002. a
Download
Short summary
Raindrops become flattened due to aerodynamic drag as they increase in mass and fall speed. This study calculated the electromagnetic interaction between microwave radiation and non-spheroidal raindrops. The calculations are made publicly available to the scientific community, in order to promote accurate representations of raindrops in measurements. Tests show that the drop shape can have a noticeable effect on microwave observations of heavy rainfall.