Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-4959-2021
https://doi.org/10.5194/amt-14-4959-2021
Research article
 | 
16 Jul 2021
Research article |  | 16 Jul 2021

Estimating the optical extinction of liquid water clouds in the cloud base region

Karolina Sarna, David P. Donovan, and Herman W. J. Russchenberg

Related authors

Monitoring aerosol–cloud interactions at the CESAR Observatory in the Netherlands
Karolina Sarna and Herman W. J. Russchenberg
Atmos. Meas. Tech., 10, 1987–1997, https://doi.org/10.5194/amt-10-1987-2017,https://doi.org/10.5194/amt-10-1987-2017, 2017
Ground-based remote sensing scheme for monitoring aerosol–cloud interactions
Karolina Sarna and Herman W. J. Russchenberg
Atmos. Meas. Tech., 9, 1039–1050, https://doi.org/10.5194/amt-9-1039-2016,https://doi.org/10.5194/amt-9-1039-2016, 2016

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Extension of AVHRR-based climate data records: exploring ways to simulate AVHRR radiances from Suomi NPP VIIRS data
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
Atmos. Meas. Tech., 18, 3833–3855, https://doi.org/10.5194/amt-18-3833-2025,https://doi.org/10.5194/amt-18-3833-2025, 2025
Short summary
Improved simulation of thunderstorm characteristics and polarimetric signatures with LIMA two-moment microphysics in AROME
Cloé David, Clotilde Augros, Benoit Vié, François Bouttier, and Tony Le Bastard
Atmos. Meas. Tech., 18, 3715–3745, https://doi.org/10.5194/amt-18-3715-2025,https://doi.org/10.5194/amt-18-3715-2025, 2025
Short summary
Assessment of horizontally oriented ice crystals with a combination of multiangle polarization lidar and cloud Doppler radar
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
Atmos. Meas. Tech., 18, 3611–3634, https://doi.org/10.5194/amt-18-3611-2025,https://doi.org/10.5194/amt-18-3611-2025, 2025
Short summary
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
Atmos. Meas. Tech., 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025,https://doi.org/10.5194/amt-18-3495-2025, 2025
Short summary
Riming-dependent snowfall rate and ice water content retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
Atmos. Meas. Tech., 18, 3287–3304, https://doi.org/10.5194/amt-18-3287-2025,https://doi.org/10.5194/amt-18-3287-2025, 2025
Short summary

Cited articles

Albrecht, B. A., Randall, D. A., and Nicholls, S.: Observations of marine stratocumulus clouds during FIRE, B. Am. Meteorol. Soc., 69, 618–626, https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2, 1988. a
Cao, X., Roy, G., Roy, N., and Bernier, R.: Comparison of the relationships between lidar integrated backscattered light and accumulated depolarization ratios for linear and circular polarization for water droplets, fog oil, and dust, Appl. Opt., 48, 4130–4141, 2009. a
Carnuth, W. and Reiter, R.: Cloud extinction profile measurements by lidar using Klett’s inversion method, Appl. Opt., 25, 2899, https://doi.org/10.1364/AO.25.002899, 1986. a, b
Collis, R. T. H.: Lidar: A new atmospheric probe, Q. J. Roy. Meteorol. Soc., 92, 220–230, https://doi.org/10.1002/qj.49709239205, 1966. a
Donovan, D. P., Klein Baltink, H., Henzing, J. S., de Roode, S. R., and Siebesma, A. P.: A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties, Atmos. Meas. Tech., 8, 237–266, https://doi.org/10.5194/amt-8-237-2015, 2015. a
Download
Short summary
We show a method for obtaining cloud optical extinction with a lidar system. We use a scheme in which a lidar signal is inverted based on the estimated value of cloud extinction at the far end of the cloud and apply a correction for multiple scattering within the cloud and a range resolution correction. By applying our technique, we show that it is possible to obtain the cloud optical extinction with an error better than 5 % up to 90 m within the cloud.
Share