Articles | Volume 14, issue 8
https://doi.org/10.5194/amt-14-5701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-5701-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM
Hongming Yi
Laboratoire de Physicochimie de l'Atmosphère, Université du
Littoral Côté d'Opale, 59140 Dunkirk, France
now at: Department of Civil and Environmental Engineering,
Princeton University, Princeton, NJ 08544, USA
Mathieu Cazaunau
Laboratoire Interuniversitaire des Systèmes Atmosphériques,
CNRS UMR7583, Universités Paris-Est Créteil and Université de Paris Diderot, 94010 Créteil, France
Aline Gratien
Laboratoire Interuniversitaire des Systèmes Atmosphériques,
CNRS UMR7583, Universités Paris-Est Créteil and Université de Paris Diderot, 94010 Créteil, France
Vincent Michoud
Laboratoire Interuniversitaire des Systèmes Atmosphériques,
CNRS UMR7583, Universités Paris-Est Créteil and Université de Paris Diderot, 94010 Créteil, France
Edouard Pangui
Laboratoire Interuniversitaire des Systèmes Atmosphériques,
CNRS UMR7583, Universités Paris-Est Créteil and Université de Paris Diderot, 94010 Créteil, France
Jean-Francois Doussin
CORRESPONDING AUTHOR
Laboratoire Interuniversitaire des Systèmes Atmosphériques,
CNRS UMR7583, Universités Paris-Est Créteil and Université de Paris Diderot, 94010 Créteil, France
Laboratoire de Physicochimie de l'Atmosphère, Université du
Littoral Côté d'Opale, 59140 Dunkirk, France
Related authors
No articles found.
Marie Thérèse El Kattar, Tingting Wei, Aditya Saxena, Hervé Herbin, and Weidong Chen
Atmos. Meas. Tech., 18, 4515–4526, https://doi.org/10.5194/amt-18-4515-2025, https://doi.org/10.5194/amt-18-4515-2025, 2025
Short summary
Short summary
This study, part of my 2024 postdoctoral research, explores an all-fiber coupled laser heterodyne radiometer (LHR) for CO2 measurements using a tunable diode laser. The LHR employs balanced detection to measure tropospheric CO2 column concentrations. Simulations are validated against previously validated instruments. This work enhances greenhouse gas monitoring and supports campaigns for emissions studies and satellite validation.
Diana L. Pereira, Aline Gratien, Chiara Giorio, Emmanuelle Mebold, Thomas Bertin, Cécile Gaimoz, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2393, https://doi.org/10.5194/egusphere-2025-2393, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study provides two methods for the quantification of molecular markers to improve the description of secondary organic aerosols using chromatographic techniques coupled with mass spectrometry. Compounds from various chemical functionalities (alcohols, acids, aldehydes), from biogenic and anthropogenic origin, were identified. Improved method performance was observed for nitro compounds, which have been associated with anthropogenic activities.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Paola Formenti, Chiara Giorio, Karine Desboeufs, Alexander Zherebker, Marco Gaetani, Clarissa Baldo, Gautier Landrot, Simona Montebello, Servanne Chevaillier, Sylvain Triquet, Guillaume Siour, Claudia Di Biagio, Francesco Battaglia, Jean-François Doussin, Anais Feron, Andreas Namwoonde, and Stuart John Piketh
EGUsphere, https://doi.org/10.5194/egusphere-2025-446, https://doi.org/10.5194/egusphere-2025-446, 2025
Short summary
Short summary
The elemental composition and solubility of several metals, including iron, at a coastal site in Namibia in August–September 2017, indicate that natural and anthropogenic dust had different solubility depending on mineralogy but mostly to the processing by fluoride ions from marine emissions, pointing out to the complexity of atmospheric/oceanic interactions in this region of the world influenced by the Benguela current and significant aerosol load.
Francesco Battaglia, Paola Formenti, Chiara Giorio, Mathieu Cazaunau, Edouard Pangui, Antonin Bergé, Aline Gratien, Thomas Bertin, Joël F. de Brito, Manolis N. Romanias, Vincent Michoud, Clarissa Baldo, Servanne Chevaillier, Gaël Noyalet, Philippe Decorse, Bénédicte Picquet-Varrault, and Jean-François Doussin
EGUsphere, https://doi.org/10.5194/egusphere-2024-4073, https://doi.org/10.5194/egusphere-2024-4073, 2025
Short summary
Short summary
This paper presents an experimental investigation of the interactions between glyoxal, an important volatile organic compound, and mineral dust particles of size and composition typical of natural conditions. We show that their interactions modifies in a definitive way the concentrations of the gas phase and the properties of the dust, which could have important implications of the atmospheric composition and the Earth's climate.
Chiara Giorio, Anne Monod, Valerio Di Marco, Pierre Herckes, Denise Napolitano, Amy Sullivan, Gautier Landrot, Daniel Warnes, Marika Nasti, Sara D'Aronco, Agathe Gérardin, Nicolas Brun, Karine Desboeufs, Sylvain Triquet, Servanne Chevaillier, Claudia Di Biagio, Francesco Battaglia, Frédéric Burnet, Stuart J. Piketh, Andreas Namwoonde, Jean-François Doussin, and Paola Formenti
EGUsphere, https://doi.org/10.5194/egusphere-2024-4140, https://doi.org/10.5194/egusphere-2024-4140, 2025
Short summary
Short summary
A comparison between the solubility of trace metals in pairs of total suspended particulate (TSP) and fog water samples collected in Henties Bay, Namibia, during the AEROCLO-sA field campaign is presented. We found enhanced solubility of metals in fog samples which we attributed to metal-ligand complexes formation in the early stages of particle activation into droplets which can then remain in a kinetically stable form in fog or lead to the formation of colloidal nanoparticles.
Sergio Harb, Manuela Cirtog, Stéphanie Alage, Christopher Cantrell, Mathieu Cazaunau, Vincent Michoud, Edouard Pangui, Antonin Bergé, Chiara Giorio, Francesco Battaglia, and Bénédicte Picquet-Varrault
EGUsphere, https://doi.org/10.5194/egusphere-2024-3419, https://doi.org/10.5194/egusphere-2024-3419, 2024
Short summary
Short summary
We investigated the reactions of α- and β-phellandrenes (from vegetation emissions) with NO3 radicals, a major nighttime oxidant from human activities. Using lab-based simulations, we examined these reactions and measured particle formation and by-products. Our findings reveal that α- and β-phellandrenes are efficient particle sources and enhance our understanding of biogenic-anthropogenic interactions and their contributions to atmospheric changes affecting climate and health.
Anil Kumar Mandariya, Junteng Wu, Anne Monod, Paola Formenti, Bénédicte Picquet-Varrault, Mathieu Cazaunau, Stephan Mertes, Laurent Poulain, Antonin Berge, Edouard Pangui, Andreas Tilgner, Thomas Schaefer, Liang Wen, Hartmut Herrmann, and Jean-François Doussin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-206, https://doi.org/10.5194/amt-2023-206, 2024
Publication in AMT not foreseen
Short summary
Short summary
An optimized and controlled protocol for generating quasi-adiabatic expansion clouds under simulated dark and light conditions was presented. The irradiated clouds clearly showed a gradual activation of seed particles into droplets. In contrast, non-irradiated clouds faced a flash activation. This paper will lay the foundation for multiphase photochemical studies implying water-soluble volatile organic compounds and particulate matter formation during cloud formation-evaporation cycles.
Ludovico Di Antonio, Claudia Di Biagio, Gilles Foret, Paola Formenti, Guillaume Siour, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 23, 12455–12475, https://doi.org/10.5194/acp-23-12455-2023, https://doi.org/10.5194/acp-23-12455-2023, 2023
Short summary
Short summary
Long-term (2000–2021) 1 km resolution satellite data have been used to investigate the climatological aerosol optical depth (AOD) variability and trends at different scales in Europe. Average enhancements of the local-to-regional AOD ratio at 550 nm of 57 %, 55 %, 39 % and 32 % are found for large metropolitan areas such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022, https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds are intensely emitted by forests and crops and react with the nitrate radical during the nighttime to form functionalized products. The purpose of this study is to furnish kinetic and mechanistic data for terpinolene and β-caryophyllene, using simulation chamber experiments. Rate constants have been measured using both relative and absolute methods, and mechanistic studies have been conducted in order to identify and quantify the main reaction products.
Alexandre Kukui, Michel Chartier, Jinhe Wang, Hui Chen, Sébastien Dusanter, Stéphane Sauvage, Vincent Michoud, Nadine Locoge, Valérie Gros, Thierry Bourrianne, Karine Sellegri, and Jean-Marc Pichon
Atmos. Chem. Phys., 21, 13333–13351, https://doi.org/10.5194/acp-21-13333-2021, https://doi.org/10.5194/acp-21-13333-2021, 2021
Short summary
Short summary
Sulfuric acid, H2SO4, plays a key role in formation of secondary atmospheric aerosol particles. It is generally accepted that the major atmospheric source of H2SO4 is the reaction of OH radicals with SO2. In this study, importance of an additional H2SO4 source via oxidation of SO2 by stabilized Criegee intermediates was estimated based on measurements at a remote site on Cape Corsica. It was found that the oxidation of SO2 by SCI may be an important source of H2SO4, especially during nighttime.
Danitza Klopper, Paola Formenti, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Gaimoz, Patrick Hease, Fadi Lahmidi, Cécile Mirande-Bret, Sylvain Triquet, Zirui Zeng, and Stuart J. Piketh
Atmos. Chem. Phys., 20, 15811–15833, https://doi.org/10.5194/acp-20-15811-2020, https://doi.org/10.5194/acp-20-15811-2020, 2020
Short summary
Short summary
The chemical composition of aerosol particles is very important as it determines to which extent they can affect the Earth's climate by acting with solar light and modifying the properties of clouds. The South Atlantic region is a remote and under-explored region to date where these effects could be important. The measurements presented in this paper consist in the analysis of samples collected at a coastal site in Namibia. The first long-term source apportionment is presented and discussed.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 20, 15167–15189, https://doi.org/10.5194/acp-20-15167-2020, https://doi.org/10.5194/acp-20-15167-2020, 2020
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, Guillaume Siour, Xavier Landsheere, Guillaume Méjean, Daniele Romanini, and Bénédicte Picquet-Varrault
Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, https://doi.org/10.5194/amt-13-6311-2020, 2020
Short summary
Short summary
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals in the CSA simulation chamber at LISA. The optical cavity allows a high sensitivity for NO3 detection up to 6 ppt for an integration time of 10 s. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (with rate constants up to 10−10 cm3 molecule−1 s−1).
Clarissa Baldo, Paola Formenti, Sophie Nowak, Servanne Chevaillier, Mathieu Cazaunau, Edouard Pangui, Claudia Di Biagio, Jean-Francois Doussin, Konstantin Ignatyev, Pavla Dagsson-Waldhauserova, Olafur Arnalds, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 20, 13521–13539, https://doi.org/10.5194/acp-20-13521-2020, https://doi.org/10.5194/acp-20-13521-2020, 2020
Short summary
Short summary
We showed that Icelandic dust has a fundamentally different chemical and mineralogical composition from low-latitude dust. In particular, magnetite is as high as 1 %–2 % of the total dust mass. Our results suggest that Icelandic dust may have an important impact on the radiation balance in the subpolar and polar regions.
Cited articles
Afif, C., Jambert, C., Michoud, V., Colomb, A., Eyglunent, G., Borbon, A.,
Daële, V., Doussin, J. F., and Perros, P.: NitroMAC: An instrument for
the measurement of HONO and intercomparison with a long-path absorption
photometer, J. Environ. Sci. (China), 40, 105–113,
https://doi.org/10.1016/j.jes.2015.10.024, 2016.
Alicke, B., Platt, U., and Stutz, J.: Impact of nitrous acid photolysis on
the total hydroxyl radical budget during the Limitation of Oxidant
Production / Pianura Padana Produzione di Ozono study in Milan, J. Geophys.
Res., 107, 8196, https://doi.org/10.1029/2000JD000075, 2002.
Barney, W. S., Wingen, L. M., Lakin, M. J., Brauers, T., Stutz, J., and
Finlayson-Pitts, B. J.: Infrared absorption cross-section measurements for
nitrous acid (HONO) at room temperature, J. Phys. Chem. A, 104,
1692–1699, https://doi.org/10.1021/jp9930503, 2000.
Barney, W. S., Wingen, L. M., Lakin, M. J., Brauers, T., Stutz, J., and
Finlayson-Pitts, B. J.: Infrared absorption cross-section measurements for
nitrous acid (HONO) at room temperature, J. Phys. Chem. A, 105,
4166–4166, https://doi.org/10.1021/jp010734d, 2001.
Brust, A. S., Becker, K. H., Kleffmann, J., and Wiesen, P.: UV absorption cross
sections of nitrous acid, Atmos Environ., 34, 13–19,
https://doi.org/10.1016/S1352-2310(99)00322-2, 2000.
Chen, W., Maamary, R., Cui, X., Wu, T., Fertein, E., Dewaele, D., Cazier,
F., Zha, Q., Xu, Z., Wang, T., Wang, Y., Zhang, W., Gao, X., Liu, W., and Dong,
F.: Photonic Sensing of Environmental Gaseous Nitrous Acid (HONO):
Opportunities and Challenges, in The Wonder of Nanotechnology: Quantum
Optoelectronic Devices and Applications, edited by: Razeghi, M., Esaki, L., and von
Klitzing, K., SPIE Press, Bellingham, WA, pp.
693–737, ISBN 978-0-8194-9596-9, 2013.
Duan, J., Qin, M., Ouyang, B., Fang, W., Li, X., Lu, K., Tang, K., Liang, S., Meng, F., Hu, Z., Xie, P., Liu, W., and Häsler, R.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO2, Atmos. Meas. Tech., 11, 4531–4543, https://doi.org/10.5194/amt-11-4531-2018, 2018.
Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F., Sheehy, P. M., Zahniser, M. S., Shorter, J. H., Wormhoudt, J. C., Lamb, B. K., Allwine, E. J., Gaffney, J. S., Marley, N. A., Grutter, M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas, C. R., Kolb, C. E., Molina, L. T., and Molina, M. J.: Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, Atmos. Chem. Phys., 7, 2691–2704, https://doi.org/10.5194/acp-7-2691-2007, 2007.
Finlayson-Pitts, B. J. and Pitts Jr., J. N.: Chemistry of the Lower and Upper Atmosphere: Theory, experiments and applications, Academic Press, New York, NY, USA, https://doi.org/10.1016/B978-0-12-257060-5.X5000-X, 2000.
Fuchs, H., Ball, S. M., Bohn, B., Brauers, T., Cohen, R. C., Dorn, H.-P., Dubé, W. P., Fry, J. L., Häseler, R., Heitmann, U., Jones, R. L., Kleffmann, J., Mentel, T. F., Müsgen, P., Rohrer, F., Rollins, A. W., Ruth, A. A., Kiendler-Scharr, A., Schlosser, E., Shillings, A. J. L., Tillmann, R., Varma, R. M., Venables, D. S., Villena Tapia, G., Wahner, A., Wegener, R., Wooldridge, P. J., and Brown, S. S.: Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign, Atmos. Meas. Tech., 3, 21–37, https://doi.org/10.5194/amt-3-21-2010, 2010.
Gherman, T., Venables, D. S., Vaughan, S., Orphal, J., and Ruth, A. A.:
Incoherent broadband cavity-enhanced absorption spectroscopy in the
near-ultraviolet: Application to HONO and NO2, Environ. Sci. Technol.,
42, 890–895, https://doi.org/10.1021/es0716913, 2008.
Gratien, A., Nilsson, E., Doussin, J. F., Johnson, M. S., Nielsen, C. J., Stenstrøm, Y., and Picquet-Varrault B.: UV and IR Absorption Cross-sections of HCHO, HCDO, and DCDO, J. Phys. Chem. A, 111, 11506–11513, https://doi.org/10.1021/jp074288r, 2007.
Gratien, A., Lefort, M., Picquet-Varrault, B., Orphal, J., Doussin, J. F., and
Flaud, J. M.: Experimental intercomparison of the absorption cross-sections
of nitrous acid (HONO) in the ultraviolet and mid-infrared spectral regions,
J. Quant. Spectrosc. Radiat. Transf., 110, 256–263,
https://doi.org/10.1016/j.jqsrt.2008.11.003, 2009.
Griffith S. M., Hansen, R. F., Dusanter, S., Michoud, V., Gilman, J. B.,
Kuster, W. C., Veres, P., Graus, M., Warneke, C., Gouw, J. A. de, Young, C.,
Washenfelder, R., Brown, S. S., Volkamer, R., Stutz, J. S., Flynn, J. H.,
Grossberg, N., Lefer, B., Alvarez, S. L., Rappenglueck, B., Mielke, L. H.,
Osthoff, H. D., and Steven, P. S.: Measurements of hydroxyl and hydroperoxy
radicals during CalNex-LA: Model comparisons and radical budgets, J.
Geophys. Res.-Atmos., 121, 4211–4232, https://doi.org/10.1002/2015JD024358, 2016.
Harris, G. W., Carter, W. P. L., Winer, A. M., Pitts, A. M. J., Platt, U.,
and Perner, D.: Observations of nitrous acid in the Los Angeles atmospheres
and implication for prediction of ozone-precursor relationship, Environ.
Sci. Technol., 16, 414–419, https://doi.org/10.1021/es00101a009, 1982.
Huang, G., Zhou, X., Deng, G., Qiao, H., and Civerolo, K.: Measurements of
atmospheric nitrous acid and nitric acid, Atmos. Environ., 36,
2225–2235, https://doi.org/10.1016/S1352-2310(02)00170-X, 2002.
Jordan, N. and Osthoff, H. D.: Quantification of nitrous acid (HONO) and nitrogen dioxide (NO2) in ambient air by broadband cavity-enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm, Atmos. Meas. Tech., 13, 273–285, https://doi.org/10.5194/amt-13-273-2020, 2020.
Kennedy, O. J., Ouyang, B., Langridge, J. M., Daniels, M. J. S., Bauguitte, S., Freshwater, R., McLeod, M. W., Ironmonger, C., Sendall, J., Norris, O., Nightingale, R., Ball, S. M., and Jones, R. L.: An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2, Atmos. Meas. Tech., 4, 1759–1776, https://doi.org/10.5194/amt-4-1759-2011, 2011.
Kleffmann, J.: Daytime sources of nitrous acid (HONO) in the atmospheric
boundary layer, Chem. Phys. Chem., 8, 1137–1144,
https://doi.org/10.1002/cphc.200700016, 2007.
Kleffmann, J., Lörzer, J. C., Wiesen, P., Kern, C., Trick, S., Volkamer,
R., Rodenas, M., and Wirtz, K.: Intercomparison of the DOAS and LOPAP
techniques for the detection of nitrous acid (HONO), Atmos. Environ.,
40, 3640–3652, https://doi.org/10.1016/j.atmosenv.2006.03.027, 2006.
Lammel, G. and Cape, J. N.: Nitrous acid and nitrite in the atmosphere,
Chem. Soc. Rev., 25, 361–369, https://doi.org/10.1039/CS9962500361, 1996.
Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Häseler, R., Bohn, B.,
Broch, S., Fuchs, H., Gomm, S., Holland, F., Jäger, J., Kaiser, J.,
Keutsch, F. N., Lohse, I., Lu, K., Tillmann, R., Wegener, R., Wolfe, G. M.,
Mentel, T. F., Kiendler-Scharr, A., and Wahner, A.: Missing Gas-Phase Source
of HONO Inferred from Zeppelin Measurements in the Troposphere, Science, 344,
292–296, https://doi.org/10.1126/science.1248999, 2014.
Liu, J., Li, X., Yang, Y., Wang, H., Kuang, C., Zhu, Y., Chen, M., Hu, J.,
Zeng, L., and Zhang, Y.: Sensitive Detection of Ambient Formaldehyde by
Incoherent Broadband Cavity Enhanced Absorption Spectroscopy, Anal. Chem.,
92, 2697–2705, https://doi.org/10.1021/acs.analchem.9b04821, 2020.
Meller, R. and Moortgat, G. K.: Temperature dependence of the absorption
cross sections of formaldehyde between 223 and 323 K in the wavelength range
225–375 nm, J. Geophys. Res.-Atmos., 105, 7089–7101, https://doi.org/10.1029/1999JD901074,
2000.
Michoud, V., Kukui, A., Camredon, M., Colomb, A., Borbon, A., Miet, K., Aumont, B., Beekmann, M., Durand-Jolibois, R., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Locoge, N., Sauvage, S., Afif, C., Gros, V., Furger, M., Ancellet, G., and Doussin, J. F.: Radical budget analysis in a suburban European site during the MEGAPOLI summer field campaign, Atmos. Chem. Phys., 12, 11951–11974, https://doi.org/10.5194/acp-12-11951-2012, 2012.
Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C., Haeffelin, M., and Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns, Atmos. Chem. Phys., 14, 2805–2822, https://doi.org/10.5194/acp-14-2805-2014, 2014.
Miles, R. B., Lempert, W. R., and Forkey, J. N.: Laser Rayleigh scattering, Meas.
Sci. Technol., 12, R33–R51, https://doi.org/10.1088/0957-0233/12/5/201, 2001.
Min, K.-E., Washenfelder, R. A., Dubé, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J., Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor, Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, 2016.
Pinto, J. P., Dibb, J., Lee, B. H., Rappenglück, B., Wood, E. C., Levy,
M., Zhang, R.-Y., Lefer, B., Ren, X.-R., Stutz, J., Tsai, C., Ackermann, L.,
Golovko, J., Herndon, S. C., Oakes, M., Meng, Q.-Y., Munger, J. W.,
Zahniser, M., and Zheng, J.: Intercomparison of Field Measurements of HONO
during SHARP, J. Geophys. Res.-Atmos., 119, 5583–5601, https://doi.org/10.1002/2013JD020287,
2014.
Reed, C., Brumby, C. A., Crilley, L. R., Kramer, L. J., Bloss, W. J., Seakins, P. W., Lee, J. D., and Carpenter, L. J.: HONO measurement by differential photolysis, Atmos. Meas. Tech., 9, 2483–2495, https://doi.org/10.5194/amt-9-2483-2016, 2016.
Ródenas, M., Munoz, A., Alacreu, F., Brauers, T., Dorn, H. P., Kleffmann,
J., and Bloss, W.: Assessment of HONO Measurements: The FIONA Campaign at
EUPHORE, in: Disposal of Dangerous Chemicals in Urban Areas and Mega Cities:
Role of Oxides and Acids of Nitrogen in Atmospheric Chemistry, edited by:
Barnes, I. and Rudzinski, K. J., NATO Science for Peace and Security Series C: Environmental Security, Springer, Dordrecht, the Netherlands, 45–58, https://doi.org/10.1007/978-94-007-5034-0_4, 2013.
Ródenas, M., Picquet-Varrault, B., and Munoz, A.: ANIR, a tool for
analysis of Infrared spectra, EGU General Assembly 2020, Online, 4–8 May
2020, EGU2020-17199, https://doi.org/10.5194/egusphere-egu2020-17199, 2020.
Sigsby, J. E., Black, F. M., Bellar, T. A., and Klosterman, D. L.:
Chemiluminescent method for analysis of nitrogen containing compounds in
mobile source emissions (NO, NO2 and NH3), Environ. Sci. Technol.,
7, 51–54, https://doi.org/10.1021/es60073a001, 1973.
Sörgel, M., Regelin, E., Bozem, H., Diesch, J.-M., Drewnick, F., Fischer, H., Harder, H., Held, A., Hosaynali-Beygi, Z., Martinez, M., and Zetzsch, C.: Quantification of the unknown HONO daytime source and its relation to NO2, Atmos. Chem. Phys., 11, 10433–10447, https://doi.org/10.5194/acp-11-10433-2011, 2011.
Spataro, F. and Ianniello, A.: Sources of atmospheric nitrous acid: State
of the science, current research needs, and future prospects, J. Air Waste
Manage. Assoc., 64, 1232–1250, https://doi.org/10.1016/j.atmosenv.2012.02.041,
2014.
Stutz, J., Kim, E. S., Platt, U., Bruno, P., Perrino, C., and Febo, A.:
UV-visible absorption cross sections of nitrous acid, J. Geophys. Res., 105,
14585–14592, https://doi.org/10.1029/2000JD900003, 2000.
Stutz, J., Alicke, B., Ackermann, R., Geyer, A., Wang, S., White, A. B.,
Williams, E. J., Spicer, C. W., and Fast, J. D.: Relative humidity dependence
of HONO chemistry in urban areas, J. Geophys. Res., 109, D03307,
https://doi.org/10.1029/2003JD004135, 2004.
Stutz, J., Oh, H. J., Whitlow, S. I., Anderson, C., Dibbb, J. E., Flynn, J.
H., Rappengluck, B., and Lefer, B.: Simultaneous DOAS and
mist-chamber IC measurements of HONO in Houston, TX, Atmos. Environ., 44,
4090–4098, https://doi.org/10.1016/j.atmosenv.2009.02.003, 2010.
Stutz, J., Wong, K. W., and Tsai, C.: Field Observation of Daytime HONO
Chemistry and its Impact on the OH Radical Budget, in: Disposal of Dangerous Chemicals in Urban Areas and Mega Cities, edited by: Barnes, I., and
Rudzinski, K. J., NATO Science for Peace and Security Series C: Environmental
Security, Springer, Dordrecht, the Netherlands, https://doi.org/10.1007/978-94-007-5034-0_1, 2013.
Tidona, R. J., Nizami A. A., and Cernansky, N. P.: Reducing Interference
Effects in the Chemiluminescent Measurement of Nitric Oxides from Combustion
Systems, J. Air Waste Manag. Assoc., 38, 806–811, https://doi.org/10.1080/08940630.1988.10466421, 1988.
VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J.,
Pszenny, A. A. P., Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R.,
Wagner, N. L., Riedel, T. P., Thornton, J. A., Wolfe, D. E., Dube, W. P.,
Ozturk, F., Brock, C. A., Grossberg, N., Lefer, B., Lerner, B., Middlebrook,
A. M., and Roberts, J. M.: Understanding the role of the ground surface in
HONO vertical structure: High resolution vertical profiles during NACHTT-11,
J. Geophys. Res., 118, 10155–10171, https://doi.org/10.1002/jgrd.50721, 2013.
Varma, R. M., Venables, D. S., Ruth, A. A., Heitmann, U., Schlosser, E., and
Dixneuf, S.: Long optical cavities for open-path monitoring of atmospheric
trace gases and aerosol extinction, Appl. Opt., 48, B159–B171, https://doi.org/10.1364/AO.48.00B159, 2009.
Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Development of a new Long Path Absorption Photometer (LOPAP) instrument for the sensitive detection of NO2 in the atmosphere, Atmos. Meas. Tech., 4, 1663–1676, https://doi.org/10.5194/amt-4-1663-2011, 2011.
Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149–159, https://doi.org/10.5194/amt-5-149-2012, 2012.
Vogel, B., Vogel, H., Kleffmann, J., and Kurtenbach, R.: Measured and simulated
vertical profiles of nitrous acid-Part II. Model simulations and indications
for a photolytic source, Atmos. Environ., 37, 2957–2966,
https://doi.org/10.1016/S1352-2310(03)00243-7, 2003.
Voigt, S., Orphal, J., and Burrows, J. P.: The temperature and pressure
dependence of the absorption cross-sections of NO2 in the 250–800 nm
region measured by Fourier-transform spectroscopy, J. Photochem. Photobiol.
A: Chem., 149, 1–7, https://doi.org/10.1016/S1010-6030(01)00650-5, 2002.
Wang, J., Doussin, J. F., Perrier, S., Perraudin, E., Katrib, Y., Pangui, E., and Picquet-Varrault, B.: Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research, Atmos. Meas. Tech., 4, 2465–2494, https://doi.org/10.5194/amt-4-2465-2011, 2011.
Washenfelder, R. A., Attwood, A. R., Flores, J. M., Zarzana, K. J., Rudich, Y., and Brown, S. S.: Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde, Atmos. Meas. Tech., 9, 41–52, https://doi.org/10.5194/amt-9-41-2016, 2016.
Wu, T., Chen, W., Fertein, E., Cazier, F., Dewaele, D., and Gao, X.:
Development of an open-path incoherent broadband cavity-enhanced
spectroscopy based instrument for simultaneous measurement of HONO and
NO2 in ambient air, Appl. Phys. B, 106, 501–509,
https://doi.org/10.1007/s00340-011-4818-3, 2012.
Wu, T., Zha, Q., Chen, W., Xu, Z., Wang, T., and He, X.: Development and
deployment of a cavity enhanced UV-LED spectrometer for measurements of
atmospheric HONO and NO2 in Hong Kong, Atmos. Environ., 95, 544–551,
https://doi.org/10.1016/j.atmosenv.2014.07.016, 2014.
Yi, H., Maamary, R., Gao, X., Sigrist, M. W., Fertein, E., and Chen, W.:
Short-lived species detection of nitrous acid by external-cavity quantum
cascade laser based quartz-enhanced photoacoustic absorption spectroscopy,
Appl. Phys. Lett., 106, 101109, https://doi.org/10.1063/1.4914896, 2015.
Yi, H., Wu, T., Wang, G., Zhao, W., Fertein, E., Coeur, C., Gao, X., Zhang,
W., and Chen, W.: Sensing atmospheric reactive species using light emitting
diode by incoherent broadband cavity enhanced absorption spectroscopy, Opt.
Express, 24, A781–A790, https://doi.org/10.1364/OE.24.00A781, 2016.
Young, C. J., Washenfelder, R. A., Roberts, J. M., Mielke, L. H., Osthoff,
H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Cochran, A. K.,
VandenBoer, T. C., Flynn, J., Grossberg, N., Haman, C. L., Lefer, B., Stark,
H., Graus, M., de Gouw, J., Gilman, J. B., Kuster, W. C., and Brown, S. S.:
Vertically resolved measurements of nighttime radical reservoirs in Los
Angeles and their contribution to the urban radical budget, Environ. Sci.
Technol., 46, 10965–10973, https://doi.org/10.1021/es302206a, 2012.
Short summary
HONO and NO2 play a crucial role in the atmospheric oxidation capacity that affects the regional air quality and global climate. Accurate measurements of HONO are challenging due to the drawback of existing detection methods. Calibration-free high-sensitivity direct, simultaneous measurements of NO2, HONO and CH2O with UV-IBBCEAS provide accurate and fast quantitative analysis of their concentration variation within their lifetime by intercomparison with NOx, FTIR and NitroMAC sensors.
HONO and NO2 play a crucial role in the atmospheric oxidation capacity that affects the regional...