Articles | Volume 15, issue 12
Atmos. Meas. Tech., 15, 3721–3745, 2022
https://doi.org/10.5194/amt-15-3721-2022
Atmos. Meas. Tech., 15, 3721–3745, 2022
https://doi.org/10.5194/amt-15-3721-2022
Research article
23 Jun 2022
Research article | 23 Jun 2022

An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations

Kang Sun et al.

Related authors

Estimates of spatially complete, observational data-driven planetary boundary layer height over the contiguous United States
Zolal Ayazpour, Shiqi Tao, Dan Li, Amy Jo Scarino, Ralph E. Kuehn, and Kang Sun
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-235,https://doi.org/10.5194/amt-2022-235, 2022
Preprint under review for AMT
Short summary
Dealing with spatial heterogeneity in pointwise-to-gridded- data comparisons
Amir H. Souri, Kelly Chance, Kang Sun, Xiong Liu, and Matthew S. Johnson
Atmos. Meas. Tech., 15, 41–59, https://doi.org/10.5194/amt-15-41-2022,https://doi.org/10.5194/amt-15-41-2022, 2022
Short summary
A satellite-data-driven framework to rapidly quantify air-basin-scale NOx emissions and its application to the Po Valley during the COVID-19 pandemic
Kang Sun, Lingbo Li, Shruti Jagini, and Dan Li
Atmos. Chem. Phys., 21, 13311–13332, https://doi.org/10.5194/acp-21-13311-2021,https://doi.org/10.5194/acp-21-13311-2021, 2021
Short summary
Spectral calibration of the MethaneAIR instrument
Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, and Steven Wofsy
Atmos. Meas. Tech., 14, 3737–3753, https://doi.org/10.5194/amt-14-3737-2021,https://doi.org/10.5194/amt-14-3737-2021, 2021
Short summary
Linearization of the effect of slit function changes for improving Ozone Monitoring Instrument ozone profile retrievals
Juseon Bak, Xiong Liu, Kang Sun, Kelly Chance, and Jae-Hwan Kim
Atmos. Meas. Tech., 12, 3777–3788, https://doi.org/10.5194/amt-12-3777-2019,https://doi.org/10.5194/amt-12-3777-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data
Klaus-Peter Heue, Diego Loyola, Fabian Romahn, Walter Zimmer, Simon Chabrillat, Quentin Errera, Jerry Ziemke, and Natalya Kramarova
Atmos. Meas. Tech., 15, 5563–5579, https://doi.org/10.5194/amt-15-5563-2022,https://doi.org/10.5194/amt-15-5563-2022, 2022
Short summary
A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022,https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Complementing XCO2 imagery with ground-based CO2 and 14CO2 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale
Elise Potier, Grégoire Broquet, Yilong Wang, Diego Santaren, Antoine Berchet, Isabelle Pison, Julia Marshall, Philippe Ciais, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5261–5288, https://doi.org/10.5194/amt-15-5261-2022,https://doi.org/10.5194/amt-15-5261-2022, 2022
Short summary
On the potential of a neural-network-based approach for estimating XCO2 from OCO-2 measurements
François-Marie Bréon, Leslie David, Pierre Chatelanaz, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5219–5234, https://doi.org/10.5194/amt-15-5219-2022,https://doi.org/10.5194/amt-15-5219-2022, 2022
Short summary
The Space Carbon Observatory (SCARBO) concept: assessment of XCO2 and XCH4 retrieval performance
Matthieu Dogniaux, Cyril Crevoisier, Silvère Gousset, Étienne Le Coarer, Yann Ferrec, Laurence Croizé, Lianghai Wu, Otto Hasekamp, Bojan Sic, and Laure Brooker
Atmos. Meas. Tech., 15, 4835–4858, https://doi.org/10.5194/amt-15-4835-2022,https://doi.org/10.5194/amt-15-4835-2022, 2022
Short summary

Cited articles

Bender, S., Sinnhuber, M., Langowski, M., and Burrows, J. P.: Retrieval of nitric oxide in the mesosphere from SCIAMACHY nominal limb spectra, Atmos. Meas. Tech., 10, 209–220, https://doi.org/10.5194/amt-10-209-2017, 2017. a, b
Bertaux, J.-L., Hauchecorne, A., Lefèvre, F., Bréon, F.-M., Blanot, L., Jouglet, D., Lafrique, P., and Akaev, P.: The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb, Atmos. Meas. Tech., 13, 3329–3374, https://doi.org/10.5194/amt-13-3329-2020, 2020. a, b, c, d, e, f, g
Björn, L.: The cold summer mesopause, Adv. Space Res., 4, 145–151, https://doi.org/10.1016/0273-1177(84)90277-1, 1984. a
Boone, C., Bernath, P., Cok, D., Jones, S., and Steffen, J.: Version 4 retrievals for the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and imagers, J. Quant. Spectrosc. Ra., 247, 106939, https://doi.org/10.1016/j.jqsrt.2020.106939, 2020. a
Boone, C. D., Nassar, R., Walker, K. A., Rochon, Y., McLeod, S. D., Rinsland, C. P., and Bernath, P. F.: Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Opt., 44, 7218–7231, https://doi.org/10.1364/AO.44.007218, 2005. a
Download
Short summary
This study of upper atmospheric airglow from oxygen is motivated by the need to measure oxygen simultaneously with methane and CO2 in satellite remote sensing. We provide an accurate understanding of the spatial, temporal, and spectral distribution of airglow emissions, which will help in the satellite remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.