Research article
03 Aug 2022
Research article
| 03 Aug 2022
Development of a broadband cavity-enhanced absorption spectrometer for simultaneous measurements of ambient NO3, NO2, and H2O
Woohui Nam et al.
Related authors
No articles found.
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
EGUsphere, https://doi.org/10.5194/egusphere-2022-820, https://doi.org/10.5194/egusphere-2022-820, 2022
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. A complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlighted an incomplete understanding of the paths leading to the formation of the OH radical and that has been observed in several different environments and that needs to be investigated further.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-410, https://doi.org/10.5194/acp-2022-410, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing the near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into i) an inherent chemistry error, ii) the decoupled relationship between columns and the near-surface concentration, iii) the spatial representativeness error of ground satellite pixels, and iv) the satellite retrieval errors.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
EGUsphere, https://doi.org/10.5194/egusphere-2022-587, https://doi.org/10.5194/egusphere-2022-587, 2022
Short summary
Short summary
The investigation of the bight-time oxidation of the most abundant hydrocarbon, isoprene in chamber experiments shows the importance of so far unaccounted reaction pathways leading to epoxy products, which could enhance particle formation. The chemical lifetime of organic nitrates from isoprene is long enough that the majority will be further oxidized on the next by daytime oxidants.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Kyung-Eun Min, Junphil Mun, Begie Perdigones, Soojin Lee, and Kyung-Hwan Kwak
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-205, https://doi.org/10.5194/acp-2022-205, 2022
Preprint under review for ACP
Short summary
Short summary
For knowing the accurate amount of human-induced CO2, emission strengths of individual activities were assessed via direct eddy-covariance observations at urban-atmosphere interface. This work extracted emission factors (EFs) with minimized seasonal effects through day of the week difference with varying wind sectors. Our work urges the need for not only emission inventory validation but also seasonal bias free EFs estimations for establishing effective climate mitigation strategies.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Luisa Hantschke, Anna Novelli, Birger Bohn, Changmin Cho, David Reimer, Franz Rohrer, Ralf Tillmann, Marvin Glowania, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, https://doi.org/10.5194/acp-21-12665-2021, 2021
Short summary
Short summary
The reactions of Δ3-carene with ozone and the hydroxyl radical (OH) and the photolysis and OH reaction of caronaldehyde were investigated in the simulation chamber SAPHIR. Reaction rate constants of these reactions were determined. Caronaldehyde yields of the ozonolysis and OH reaction were determined. The organic nitrate yield of the reaction of Δ3-carene and caronaldehyde-derived peroxy radicals with NO was determined. The ROx budget (ROx = OH+HO2+RO2) was also investigated.
Changmin Cho, Andreas Hofzumahaus, Hendrik Fuchs, Hans-Peter Dorn, Marvin Glowania, Frank Holland, Franz Rohrer, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech., 14, 1851–1877, https://doi.org/10.5194/amt-14-1851-2021, https://doi.org/10.5194/amt-14-1851-2021, 2021
Short summary
Short summary
This study describes the implementation and characterization of the chemical modulation reactor (CMR) used in the laser-induced fluorescence instrument of the Forschungszentrum Jülich. The CMR allows for interference-free OH radical measurement in ambient air. During a field campaign in a rural environment, the observed interference was mostly below the detection limit of the instrument and fully explained by the known ozone interference.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Xin Chen, Dylan B. Millet, Hanwant B. Singh, Armin Wisthaler, Eric C. Apel, Elliot L. Atlas, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, John D. Crounse, Joost A. de Gouw, Frank M. Flocke, Alan Fried, Brian G. Heikes, Rebecca S. Hornbrook, Tomas Mikoviny, Kyung-Eun Min, Markus Müller, J. Andrew Neuman, Daniel W. O'Sullivan, Jeff Peischl, Gabriele G. Pfister, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Stephen R. Shertz, Chelsea R. Thompson, Victoria Treadaway, Patrick R. Veres, James Walega, Carsten Warneke, Rebecca A. Washenfelder, Petter Weibring, and Bin Yuan
Atmos. Chem. Phys., 19, 9097–9123, https://doi.org/10.5194/acp-19-9097-2019, https://doi.org/10.5194/acp-19-9097-2019, 2019
Short summary
Short summary
Volatile organic compounds (VOCs) affect air quality and modify the lifetimes of other pollutants. We combine a high-resolution 3-D atmospheric model with an ensemble of aircraft observations to perform an integrated analysis of the VOC budget over North America. We find that biogenic emissions provide the main source of VOC reactivity even in most major cities. Our findings point to key gaps in current models related to oxygenated VOCs and to the distribution of VOCs in the free troposphere.
Martin K. Vollmer, Dickon Young, Cathy M. Trudinger, Jens Mühle, Stephan Henne, Matthew Rigby, Sunyoung Park, Shanlan Li, Myriam Guillevic, Blagoj Mitrevski, Christina M. Harth, Benjamin R. Miller, Stefan Reimann, Bo Yao, L. Paul Steele, Simon A. Wyss, Chris R. Lunder, Jgor Arduini, Archie McCulloch, Songhao Wu, Tae Siek Rhee, Ray H. J. Wang, Peter K. Salameh, Ove Hermansen, Matthias Hill, Ray L. Langenfelds, Diane Ivy, Simon O'Doherty, Paul B. Krummel, Michela Maione, David M. Etheridge, Lingxi Zhou, Paul J. Fraser, Ronald G. Prinn, Ray F. Weiss, and Peter G. Simmonds
Atmos. Chem. Phys., 18, 979–1002, https://doi.org/10.5194/acp-18-979-2018, https://doi.org/10.5194/acp-18-979-2018, 2018
Short summary
Short summary
We measured the three chlorofluorocarbons (CFCs) CFC-13, CFC-114, and CFC-115 in the atmosphere because they are important in stratospheric ozone depletion. These compounds should have decreased in the atmosphere because they are banned by the Montreal Protocol but we find the opposite. Emissions over the last decade have not declined on a global scale. We use inverse modeling and our observations to find that a large part of the emissions originate in the Asian region.
Christopher Chan Miller, Daniel J. Jacob, Eloise A. Marais, Karen Yu, Katherine R. Travis, Patrick S. Kim, Jenny A. Fisher, Lei Zhu, Glenn M. Wolfe, Thomas F. Hanisco, Frank N. Keutsch, Jennifer Kaiser, Kyung-Eun Min, Steven S. Brown, Rebecca A. Washenfelder, Gonzalo González Abad, and Kelly Chance
Atmos. Chem. Phys., 17, 8725–8738, https://doi.org/10.5194/acp-17-8725-2017, https://doi.org/10.5194/acp-17-8725-2017, 2017
Short summary
Short summary
The use of satellite glyoxal observations for estimating isoprene emissions has been limited by knowledge of the glyoxal yield from isoprene. We use SENEX aircraft observations over the southeast US to evaluate glyoxal yields from isoprene in a 3-D atmospheric model. The SENEX observations support a pathway for glyoxal formation in pristine regions that we propose here, which may have implications for improving isoprene emissions estimates from upcoming high-resolution geostationary satellites.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
K.-E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown
Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, https://doi.org/10.5194/amt-9-423-2016, 2016
Short summary
Short summary
We have developed a two-channel broadband cavity enhanced absorption spectrometer for field measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO, and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s, with accuracy of 5.8, 9.0 and 5.0 %.
J. Kaiser, G. M. Wolfe, K. E. Min, S. S. Brown, C. C. Miller, D. J. Jacob, J. A. deGouw, M. Graus, T. F. Hanisco, J. Holloway, J. Peischl, I. B. Pollack, T. B. Ryerson, C. Warneke, R. A. Washenfelder, and F. N. Keutsch
Atmos. Chem. Phys., 15, 7571–7583, https://doi.org/10.5194/acp-15-7571-2015, https://doi.org/10.5194/acp-15-7571-2015, 2015
K.-E. Min, S. E. Pusede, E. C. Browne, B. W. LaFranchi, and R. C. Cohen
Atmos. Chem. Phys., 14, 5495–5512, https://doi.org/10.5194/acp-14-5495-2014, https://doi.org/10.5194/acp-14-5495-2014, 2014
S. E. Pusede, D. R. Gentner, P. J. Wooldridge, E. C. Browne, A. W. Rollins, K.-E. Min, A. R. Russell, J. Thomas, L. Zhang, W. H. Brune, S. B. Henry, J. P. DiGangi, F. N. Keutsch, S. A. Harrold, J. A. Thornton, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, J. Sanders, X. Ren, T. C. VandenBoer, M. Z. Markovic, A. Guha, R. Weber, A. H. Goldstein, and R. C. Cohen
Atmos. Chem. Phys., 14, 3373–3395, https://doi.org/10.5194/acp-14-3373-2014, https://doi.org/10.5194/acp-14-3373-2014, 2014
E. C. Browne, P. J. Wooldridge, K.-E. Min, and R. C. Cohen
Atmos. Chem. Phys., 14, 1225–1238, https://doi.org/10.5194/acp-14-1225-2014, https://doi.org/10.5194/acp-14-1225-2014, 2014
E. C. Browne, K.-E. Min, P. J. Wooldridge, E. Apel, D. R. Blake, W. H. Brune, C. A. Cantrell, M. J. Cubison, G. S. Diskin, J. L. Jimenez, A. J. Weinheimer, P. O. Wennberg, A. Wisthaler, and R. C. Cohen
Atmos. Chem. Phys., 13, 4543–4562, https://doi.org/10.5194/acp-13-4543-2013, https://doi.org/10.5194/acp-13-4543-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Airborne flux measurements of ammonia over the southern Great Plains using chemical ionization mass spectrometry
Optical receiver characterizations and corrections for ground-based and airborne measurements of spectral actinic flux densities
Development and validation of a new in situ technique to measure total gaseous chlorine in air
True eddy accumulation – Part 1: Solutions to the problem of non-vanishing mean vertical wind velocity
True eddy accumulation – Part 2: Theory and experiment of the short-time eddy accumulation method
Chemical ionization mass spectrometry utilizing ammonium ions (NH4+ CIMS) for measurements of organic compounds in the atmosphere
Direct measurement of N2O5 heterogeneous uptake coefficients on ambient aerosols via an aerosol flow tube system: design, characterization and performance
Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS)
Intercomparison of in situ measurements of ambient NH3: instrument performance and application under field conditions
A lightweight broadband cavity-enhanced spectrometer for NO2 measurement on uncrewed aerial vehicles
On the development of a new prototype PTR-ToF-MS instrument and its application to the detection of atmospheric amines
Development of multi-channel whole-air sampling equipment onboard unmanned aerial vehicle for investigating VOCs vertical distribution in the planetary boundary layer
New methods for the calibration of optical resonators: Integrated Calibration by means of Optical Modulation (ICOM) and Narrow Band Cavity ring-down (NB-CRD)
Low-complexity methods to mitigate the impact of environmental variables on low-cost UAS-based atmospheric carbon dioxide measurements
Comparison of airborne measurements of NO, NO2, HONO, NOy, and CO during FIREX-AQ
Improvements of a low-cost CO2 commercial nondispersive near-infrared (NDIR) sensor for unmanned aerial vehicle (UAV) atmospheric mapping applications
Development and testing of a novel sulfur dioxide sonde
Temperature-dependent sensitivity of iodide chemical ionization mass spectrometers
A quadcopter unmanned aerial system (UAS)-based methodology for measuring biomass burning emission factors
Evaluating the performance of a Picarro G2207-i analyser for high-precision atmospheric O2 measurements
A modular field system enabling cavity ring-down spectroscopy of in-situ vapor observations in harsh environments: The ISE-CUBE system
Electrochemical sensors onboard a Zeppelin NT: In-flight evaluation of low-cost trace gas measurements
Air quality observations onboard commercial and targeted Zeppelin flights in Germany – a platform for high-resolution trace-gas and aerosol measurements within the planetary boundary layer
Measuring dry deposition of ammonia using flux-gradient and eddy covariance methods with two novel open-path instruments
Performance of open-path lasers and Fourier transform infrared spectroscopic systems in agriculture emissions research
Metrology for low-cost CO2 sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO2 fluxes observations
A relaxed eddy accumulation (REA) LOPAP system for flux measurements of nitrous acid (HONO)
Fill dynamics and sample mixing in the AirCore
IRIS analyser assessment reveals sub-hourly variability of isotope ratios in carbon dioxide at Baring Head, New Zealand's atmospheric observatory in the Southern Ocean
A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry
Design and characterization of a semi-open dynamic chamber for measuring biogenic volatile organic compound (BVOC) emissions from plants
First eddy covariance flux measurements of semi-volatile organic compounds with the PTR3-TOF-MS
An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments
Novel approach to observing system simulation experiments improves information gain of surface–atmosphere field measurements
UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms
Modification of a conventional photolytic converter for improving aircraft measurements of NO2 via chemiluminescence
Bromine speciation in volcanic plumes: new in situ derivatization LC-MS method for the determination of gaseous hydrogen bromide by gas diffusion denuder sampling
Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases
Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere
Calibration and assessment of electrochemical low-cost sensors in remote alpine harsh environments
Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM
Impact of ozone and inlet design on the quantification of isoprene-derived organic nitrates by thermal dissociation cavity ring-down spectroscopy (TD-CRDS)
The Berkeley Environmental Air-quality and CO2 Network: field calibrations of sensor temperature dependence and assessment of network scale CO2 accuracy
Iodide CIMS and m∕z 62: the detection of HNO3 as NO3− in the presence of PAN, peroxyacetic acid and ozone
Airborne Mid-Infrared Cavity enhanced Absorption spectrometer (AMICA)
Ethane measurement by Picarro CRDS G2201-i in laboratory and field conditions: potential and limitations
On-line solid phase microextraction derivatization for the sensitive determination of multi-oxygenated volatile compounds in air
Thermal dissociation cavity-enhanced absorption spectrometer for measuring NO2, RO2NO2, and RONO2 in the atmosphere
Internal consistency of the IAGOS ozone and carbon monoxide measurements for the last 25 years
Testing the altitude attribution and vertical resolution of AirCore measurements with a new spiking method
Siegfried Schobesberger, Emma L. D'Ambro, Lejish Vettikkat, Ben H. Lee, Qiaoyun Peng, David M. Bell, John E. Shilling, Manish Shrivastava, Mikhail Pekour, Jerome Fast, and Joel A. Thornton
Atmos. Meas. Tech., 16, 247–271, https://doi.org/10.5194/amt-16-247-2023, https://doi.org/10.5194/amt-16-247-2023, 2023
Short summary
Short summary
We present a new, highly sensitive technique for measuring atmospheric ammonia, an important trace gas that is emitted mainly by agriculture. We deployed the instrument on an aircraft during research flights over rural Oklahoma. Due to its fast response, we could analyze correlations with turbulent winds and calculate ammonia emissions from nearby areas at 1 to 2 km resolution. We observed high spatial variability and point sources that are not resolved in the US National Emissions Inventory.
Birger Bohn and Insa Lohse
Atmos. Meas. Tech., 16, 209–233, https://doi.org/10.5194/amt-16-209-2023, https://doi.org/10.5194/amt-16-209-2023, 2023
Short summary
Short summary
Optical receivers for solar spectral actinic radiation are designed for angle-independent sensitivities within a hemisphere. Remaining imperfections can be compensated for by receiver-specific corrections based on laboratory characterizations and radiative transfer calculations of spectral radiance distributions. The corrections cover a wide range of realistic atmospheric conditions and were applied to ground-based and airborne measurements in a wavelength range 280–660 nm.
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 29–40, https://doi.org/10.5194/amt-16-29-2023, https://doi.org/10.5194/amt-16-29-2023, 2023
Short summary
Short summary
The true eddy accumulation (TEA) method enables measuring atmospheric exchange with slow-response gas analyzers. TEA is formulated assuming ideal conditions with a zero mean vertical wind velocity during the averaging interval. This core assumption is rarely valid under field conditions. Here, we extend the TEA equation to accommodate nonideal conditions. The new equation allows constraining the systematic error term in the measured fluxes and the possibility to minimize or remove it.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 41–55, https://doi.org/10.5194/amt-16-41-2023, https://doi.org/10.5194/amt-16-41-2023, 2023
Short summary
Short summary
A new micrometeorological method to measure atmospheric exchange is proposed, and a prototype sampler is evaluated. The new method, called short-time eddy accumulation, is a variant of the eddy accumulation method, which is suited for use with slow gas analyzers. The new method enables adaptive time-varying accumulation intervals, which brings many advantages to flux measurements such as an improved dynamic range and the ability to run eddy accumulation in a continuous flow-through mode.
Lu Xu, Matthew M. Coggon, Chelsea E. Stockwell, Jessica B. Gilman, Michael A. Robinson, Martin Breitenlechner, Aaron Lamplugh, John D. Crounse, Paul O. Wennberg, J. Andrew Neuman, Gordon A. Novak, Patrick R. Veres, Steven S. Brown, and Carsten Warneke
Atmos. Meas. Tech., 15, 7353–7373, https://doi.org/10.5194/amt-15-7353-2022, https://doi.org/10.5194/amt-15-7353-2022, 2022
Short summary
Short summary
We describe the development and operation of a chemical ionization mass spectrometer using an ammonium–water cluster (NH4+·H2O) as a reagent ion. NH4+·H2O is a highly versatile reagent ion for measurements of a wide range of oxygenated organic compounds. The major product ion is the cluster with NH4+ produced via ligand-switching reactions. The instrumental sensitivities of analytes depend on the binding energy of the analyte–NH4+ cluster; sensitivities can be estimated using voltage scanning.
Xiaorui Chen, Haichao Wang, Tianyu Zhai, Chunmeng Li, and Keding Lu
Atmos. Meas. Tech., 15, 7019–7037, https://doi.org/10.5194/amt-15-7019-2022, https://doi.org/10.5194/amt-15-7019-2022, 2022
Short summary
Short summary
N2O5 is an important reservoir of atmospheric nitrogen, on whose interface reaction ambient particles can largely influence the fate of nitrogen oxides and air quality. In this study, we develop an approach to enable the reactions of N2O5 on ambient particles directly in a tube reactor, deriving the reaction rates with high accuracy by means of a chemistry model. Its successful application helps complement the data scarcity and to fill the knowledge gap between laboratory and field results.
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao
Atmos. Meas. Tech., 15, 6935–6947, https://doi.org/10.5194/amt-15-6935-2022, https://doi.org/10.5194/amt-15-6935-2022, 2022
Short summary
Short summary
In this study, we demonstrate that selective online measurements of cycloalkanes can be achieved using proton transfer reaction time-of-flight mass spectrometry with NO+ chemical ionization (NO+ PTR-ToF-MS), with fast response and low detection limits. Applications of this method in both urban air and emission sources will be shown.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Caroline C. Womack, Steven S. Brown, Steven J. Ciciora, Ru-Shan Gao, Richard J. McLaughlin, Michael A. Robinson, Yinon Rudich, and Rebecca A. Washenfelder
Atmos. Meas. Tech., 15, 6643–6652, https://doi.org/10.5194/amt-15-6643-2022, https://doi.org/10.5194/amt-15-6643-2022, 2022
Short summary
Short summary
We present a new miniature instrument to measure nitrogen dioxide (NO2) using cavity-enhanced spectroscopy. NO2 contributes to the formation of pollutants such as ozone and particulate matter, and its concentration can vary widely near sources. We developed this lightweight (3.05 kg) low-power (<35 W) instrument to measure NO2 on uncrewed aircraft vehicles (UAVs) and demonstrate that it has the accuracy and precision needed for atmospheric field measurements.
Alexander Håland, Tomáš Mikoviny, Elisabeth Emilie Syse, and Armin Wisthaler
Atmos. Meas. Tech., 15, 6297–6307, https://doi.org/10.5194/amt-15-6297-2022, https://doi.org/10.5194/amt-15-6297-2022, 2022
Short summary
Short summary
PTR-MS is widely used in atmospheric sciences for the detection of non-methane organic trace gases. The two most widely used types of PTR-MS instruments differ in their ion source and drift tube design. We herein present a new prototype PTR-MS instrument that hybridizes these designs and combines a conventional hollow cathode glow discharge ion source with a focusing ion–molecule reactor. We also show how this new instrument performs in detecting atmospheric amines.
Suding Yang, Xin Li, Limin Zeng, Xuena Yu, Ying Liu, Sihua Lu, Xiaofeng Huang, Dongmei Zhang, Haibin Xu, Shuchen Lin, Jinhui Cui, Lifan Wang, Ying Chen, Wenjie Wang, Mengdi Song, Liuwei Kong, Yi Liu, Linhui Wei, Xianwu Zhu, and Yuanhang Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-277, https://doi.org/10.5194/amt-2022-277, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Vertical observation of volatile organic compounds (VOCs) is essential to study the spatial distribution and evolution patterns of VOCs in the planetary boundary layer (PBL). This paper describes multi-channel whole-air sampling equipment onboard the unmanned aerial vehicle (UAV) for near-continuous VOC vertical observation. Vertical profiles of VOCs and trace gases during the evolution of PBL in southwest China have been successfully obtained by deploying the newly developed UAV system.
Henning Finkenzeller, Denis Pöhler, Martin Horbanski, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-274, https://doi.org/10.5194/amt-2022-274, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Optical resonators enhance the light path in compact instruments, thereby improving the sensitivity. Determining the established path length in the instrument is a prerequisite for the accurate determination of trace gas concentrations but can be a significant complication in the use of such resonators. Here we show two calibration techniques which are relatively simple and free of consumables, but still provide accurate calibrations. This facilitates the use of optical resonators.
Gustavo Britto Hupsel de Azevedo, Bill Doyle, Christopher A. Fiebrich, and David Schvartzman
Atmos. Meas. Tech., 15, 5599–5618, https://doi.org/10.5194/amt-15-5599-2022, https://doi.org/10.5194/amt-15-5599-2022, 2022
Short summary
Short summary
Strong changes in pressure, temperature, and humidity occur when small scientific aircraft ascend through the atmosphere to measure carbon dioxide. These strong changes can produce errors in the carbon dioxide measurements. To avoid these errors, we present a low-cost and simple correction method. This low-complexity method allows more researchers to study atmospheric carbon dioxide, reducing entry barriers in this field.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Yunsong Liu, Jean-Daniel Paris, Mihalis Vrekoussis, Panayiota Antoniou, Christos Constantinides, Maximilien Desservettaz, Christos Keleshis, Olivier Laurent, Andreas Leonidou, Carole Philippon, Panagiotis Vouterakos, Pierre-Yves Quéhé, Philippe Bousquet, and Jean Sciare
Atmos. Meas. Tech., 15, 4431–4442, https://doi.org/10.5194/amt-15-4431-2022, https://doi.org/10.5194/amt-15-4431-2022, 2022
Short summary
Short summary
This paper details laboratory-based and field developments of a cost-effective and compacted UAV CO2 sensor system to address the challenge of measuring CO2 with sufficient precision and acquisition frequency. We assess its performance extensively through laboratory and field tests and provide a case study in an urban area (Nicosia, Cyprus). We therefore expect that this portable system will be widely used for measuring CO2 emission and distribution in natural or urban environments.
Subin Yoon, Alexander Kotsakis, Sergio L. Alvarez, Mark G. Spychala, Elizabeth Klovenski, Paul Walter, Gary Morris, Ernesto Corrales, Alfredo Alan, Jorge A. Diaz, and James H. Flynn
Atmos. Meas. Tech., 15, 4373–4384, https://doi.org/10.5194/amt-15-4373-2022, https://doi.org/10.5194/amt-15-4373-2022, 2022
Short summary
Short summary
SO2 is adverse to human health and the environment. A single SO2 sonde was developed to provide direct SO2 measurement with a greater vertical extent, a lower limit of detection, and less uncertainty relative to the previous dual-sonde method. The single sonde was tested in the field near volcanoes and anthropogenic sources where the sonde measured SO2 ranging from 0.5 to 940 ppb. This lighter-weight payload can be a great candidate to attach to small drones and unmanned aerial vehicles.
Michael A. Robinson, J. Andrew Neuman, L. Gregory Huey, James M. Roberts, Steven S. Brown, and Patrick R. Veres
Atmos. Meas. Tech., 15, 4295–4305, https://doi.org/10.5194/amt-15-4295-2022, https://doi.org/10.5194/amt-15-4295-2022, 2022
Short summary
Short summary
Iodide chemical ionization mass spectrometry (CIMS) is commonly used in atmospheric chemistry laboratory studies and field campaigns. Deployment of the NOAA iodide CIMS instrument in the summer of 2021 indicated a significant and overlooked temperature dependence of the instrument sensitivity. This work explores which analytes are influenced by this phenomena. Additionally, we recommend controls to reduce this effect for future field deployments.
Roland Vernooij, Patrik Winiger, Martin Wooster, Tercia Strydom, Laurent Poulain, Ulrike Dusek, Mark Grosvenor, Gareth J. Roberts, Nick Schutgens, and Guido R. van der Werf
Atmos. Meas. Tech., 15, 4271–4294, https://doi.org/10.5194/amt-15-4271-2022, https://doi.org/10.5194/amt-15-4271-2022, 2022
Short summary
Short summary
Landscape fires are a substantial emitter of greenhouse gases and aerosols. Previous studies have indicated savanna emission factors to be highly variable. Improving fire emission estimates, and understanding future climate- and human-induced changes in fire regimes, requires in situ measurements. We present a drone-based method that enables the collection of a large amount of high-quality emission factor measurements that do not have the biases of aircraft or surface measurements.
Leigh S. Fleming, Andrew C. Manning, Penelope A. Pickers, Grant L. Forster, and Alex J. Etchells
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-207, https://doi.org/10.5194/amt-2022-207, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Measurements of atmospheric O2 can help constrain the carbon cycle processes and quantify fossil fuel CO2 emissions; however, atmospheric O2 measurement is very challenging, and existing analysers are complex systems to build and maintain. We have tested a new O2 analyser (Picarro Inc. G2207-i) in the laboratory and at Weybourne Atmospheric Observatory. We have found that the G2207-i does not perform as well as an existing O2 analyser from Sable Systems Inc..
Andrew Walter Seidl, Harald Sodemann, and Hans Christian Steen-Larsen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-208, https://doi.org/10.5194/amt-2022-208, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
It is challenging to make field measurements of stable water isotopes in the Arctic. To this end, we present a modular stable water isotope analyzer deployment system, the ISE-CUBEs. The system operated for a two week field campaign during the Arctic winter. We evaluate the system’s performance and analyze any potential impact that the field conditions might have had on the isotopic measurements.
Tobias Schuldt, Georgios I. Gkatzelis, Christian Wesolek, Franz Rohrer, Benjamin Winter, Thomas A. J. Kuhlbusch, Astrid Kiendler-Scharr, and Ralf Tillmann
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-186, https://doi.org/10.5194/amt-2022-186, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
We report in-situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin NT in Germany. We highlight the in-flight evaluation of electrochemical sensors that were installed inside a hatch box located on the bottom of the Zeppelin. Results from this work emphasize the potential of these sensors for other in situ airborne applications, e.g., onboard unmanned aerial vehicles (UAVs).
Ralf Tillmann, Georgios I. Gkatzelis, Franz Rohrer, Benjamin Winter, Christian Wesolek, Tobias Schuldt, Anne C. Lange, Philipp Franke, Elmar Friese, Michael Decker, Robert Wegener, Morten Hundt, Oleg Aseev, and Astrid Kiendler-Scharr
Atmos. Meas. Tech., 15, 3827–3842, https://doi.org/10.5194/amt-15-3827-2022, https://doi.org/10.5194/amt-15-3827-2022, 2022
Short summary
Short summary
We report in situ measurements of air pollutant concentrations within the planetary boundary layer on board a Zeppelin in Germany. The low costs of commercial flights provide an affordable and efficient method to improve our understanding of changes in emissions in space and time. The experimental setup expands the capabilities of this platform and provides insights into primary and secondary pollution observations and planetary boundary layer dynamics which determine air quality significantly.
Daan Swart, Jun Zhang, Shelley van der Graaf, Susanna Rutledge-Jonker, Arjan Hensen, Stijn Berkhout, Pascal Wintjen, René van der Hoff, Marty Haaima, Arnoud Frumau, Pim van den Bulk, Ruben Schulte, and Thomas van Goethem
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-171, https://doi.org/10.5194/amt-2022-171, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
During a five-week comparison campaign, we tested two setups that aim to measure half-hourly ammonia fluxes. The eddy covariance and flux gradient systems showed very similar results when the upwind terrain was both homogeneous and free of obstacles. We discuss the technical performance and practical limitations of both systems. Measurements from these instruments can facilitate the study of processes behind ammonia deposition, an important contributor to eutrophication in natural areas.
Mei Bai, Zoe Loh, David W. T. Griffith, Debra Turner, Richard Eckard, Robert Edis, Owen T. Denmead, Glenn W. Bryant, Clare Paton-Walsh, Matthew Tonini, Sean M. McGinn, and Deli Chen
Atmos. Meas. Tech., 15, 3593–3610, https://doi.org/10.5194/amt-15-3593-2022, https://doi.org/10.5194/amt-15-3593-2022, 2022
Short summary
Short summary
The open-path laser (OPL) and open-path Fourier transform infrared (OP-FTIR) are used in agricultural research, but their error in emissions research has not been the focus of studies. We conducted trace gas release trials and herd and paddock emission studies to compare their applicability and performance. The OP-FTIR has better stability in stable conditions than OPL. The CH4 OPL accurately detects the low background level of CH4, but the NH3 OPL only detects background values >10 ppbv.
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Short summary
Low-cost air enquirer kits, including CO2 and environmental parameter sensors, have been designed, built, and tested in a new steady-state through-flow chamber for simultaneous measurements of CO2 fluxes in soil and CO2 concentrations in air. A CO2 calibration and multiparametric fitting reduced the total uncertainty of CO2 concentration by 90 %. This system allows continuous measurement of CO2 fluxes and CO2 ambient air, with low cost (EUR 1200), low energy demand (<5 W), and low maintenance.
Lisa von der Heyden, Walter Wißdorf, Ralf Kurtenbach, and Jörg Kleffmann
Atmos. Meas. Tech., 15, 1983–2000, https://doi.org/10.5194/amt-15-1983-2022, https://doi.org/10.5194/amt-15-1983-2022, 2022
Short summary
Short summary
A relaxed eddy accumulation (REA) system based on the LOPAP technique for the quantification of vertical fluxes of nitrous acid (HONO) was developed and tested in a field campaign. Typical diurnal variations of the HONO fluxes were observed with low, partly negative fluxes during night-time and higher positive fluxes around noon. The highest correlation of the HONO flux was observed with the product of the NO2 photolysis frequency and the NO2 concentration.
Pieter Tans
Atmos. Meas. Tech., 15, 1903–1916, https://doi.org/10.5194/amt-15-1903-2022, https://doi.org/10.5194/amt-15-1903-2022, 2022
Short summary
Short summary
The AirCore collects a continuous air sample in a long tube that can be read later when the captured air is slowly pushed through an analyzer. Much of the variation of gas composition encountered during collection is preserved, like having up to ~ 100 separate air samples. This is illustrated through examples of actual flights, and the analysis algorithm is described. The AirCore provides access to air as high as the mid stratosphere, enabling validation for satellite air composition soundings.
Peter Sperlich, Gordon W. Brailsford, Rowena C. Moss, John McGregor, Ross J. Martin, Sylvia Nichol, Sara Mikaloff-Fletcher, Beata Bukosa, Magda Mandic, C. Ian Schipper, Paul Krummel, and Alan D. Griffiths
Atmos. Meas. Tech., 15, 1631–1656, https://doi.org/10.5194/amt-15-1631-2022, https://doi.org/10.5194/amt-15-1631-2022, 2022
Short summary
Short summary
We tested an in situ analyser for carbon and oxygen isotopes in atmospheric CO2 at Baring Head, New Zealand’s observatory for Southern Ocean baseline air. The analyser was able to resolve regional signals of the terrestrial carbon cycle, although the analysis of small events was limited by analytical uncertainty. Further improvement of the instrument performance would be desirable for the robust analysis of distant signals and to resolve the small variability in Southern Ocean baseline air.
Martin Breitenlechner, Gordon A. Novak, J. Andrew Neuman, Andrew W. Rollins, and Patrick R. Veres
Atmos. Meas. Tech., 15, 1159–1169, https://doi.org/10.5194/amt-15-1159-2022, https://doi.org/10.5194/amt-15-1159-2022, 2022
Short summary
Short summary
We coupled a new ion source to a commercially available state-of-the-art trace gas analyzer. The instrument is particularly well suited for conducting high-altitude observations, addressing the challenges of low ambient pressures and a complex sample matrix. The new instrument and ion source provides significant advantages to more traditional modes of operation, without sacrificing the sensitivity and flexibility of this technique.
Jianqiang Zeng, Yanli Zhang, Huina Zhang, Wei Song, Zhenfeng Wu, and Xinming Wang
Atmos. Meas. Tech., 15, 79–93, https://doi.org/10.5194/amt-15-79-2022, https://doi.org/10.5194/amt-15-79-2022, 2022
Short summary
Short summary
The emission of biogenic volatile organic compounds (BVOCs) from plant leaves is an essential part of biosphere–atmosphere interactions. Here we demonstrate how a dynamic chamber for measuring branch-scale BVOC emissions could be characterized both in the lab for adsorptive losses and in the field for ambient–enclosure environmental differences. The results also imply emission factors for terpenes might be underestimated if measured using dynamic chambers without certified transfer efficiencies.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Kevin S. Rozmiarek, Bruce H. Vaughn, Tyler R. Jones, Valerie Morris, William B. Skorski, Abigail G. Hughes, Jack Elston, Sonja Wahl, Anne-Katrine Faber, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 14, 7045–7067, https://doi.org/10.5194/amt-14-7045-2021, https://doi.org/10.5194/amt-14-7045-2021, 2021
Short summary
Short summary
We have designed an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. During flight, we measure location, temperature, humidity, and pressure to determine the height of the planetary boundary layer (PBL) using algorithms, allowing for strategic decision-making by the pilot to collect samples in glass flasks contained in the nose cone of the UAV.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Eric J. Hintsa, Fred L. Moore, Dale F. Hurst, Geoff S. Dutton, Bradley D. Hall, J. David Nance, Ben R. Miller, Stephen A. Montzka, Laura P. Wolton, Audra McClure-Begley, James W. Elkins, Emrys G. Hall, Allen F. Jordan, Andrew W. Rollins, Troy D. Thornberry, Laurel A. Watts, Chelsea R. Thompson, Jeff Peischl, Ilann Bourgeois, Thomas B. Ryerson, Bruce C. Daube, Yenny Gonzalez Ramos, Roisin Commane, Gregory W. Santoni, Jasna V. Pittman, Steven C. Wofsy, Eric Kort, Glenn S. Diskin, and T. Paul Bui
Atmos. Meas. Tech., 14, 6795–6819, https://doi.org/10.5194/amt-14-6795-2021, https://doi.org/10.5194/amt-14-6795-2021, 2021
Short summary
Short summary
We built UCATS to study atmospheric chemistry and transport. It has measured trace gases including CFCs, N2O, SF6, CH4, CO, and H2 with gas chromatography, as well as ozone and water vapor. UCATS has been part of missions to study the tropical tropopause; transport of air into the stratosphere; greenhouse gases, transport, and chemistry in the troposphere; and ozone chemistry, on both piloted and unmanned aircraft. Its design, capabilities, and some results are shown and described here.
Clara M. Nussbaumer, Uwe Parchatka, Ivan Tadic, Birger Bohn, Daniel Marno, Monica Martinez, Roland Rohloff, Hartwig Harder, Flora Kluge, Klaus Pfeilsticker, Florian Obersteiner, Martin Zöger, Raphael Doerich, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 14, 6759–6776, https://doi.org/10.5194/amt-14-6759-2021, https://doi.org/10.5194/amt-14-6759-2021, 2021
Short summary
Short summary
NO2 plays a central role in atmospheric photochemical processes and requires accurate measurements. This research presents NO2 data obtained via chemiluminescence using a photolytic converter from airborne studies around Cabo Verde and laboratory investigations. We show the limits and error-proneness of a conventional blue light converter in aircraft measurements affected by humidity and NO levels and suggest the use of an alternative quartz converter for more reliable results.
Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, and Thorsten Hoffmann
Atmos. Meas. Tech., 14, 6395–6406, https://doi.org/10.5194/amt-14-6395-2021, https://doi.org/10.5194/amt-14-6395-2021, 2021
Short summary
Short summary
Motivated by a special interest in bromine chemistry in volcanic plumes, the study presented here describes a new method for the quantitative collection of gaseous hydrogen bromide in gas diffusion denuders. The hydrogen bromide reacted during sampling with appropriate epoxides applied to the denuder walls. The denuder sampling assembly was successfully deployed in the volcanic plume of Masaya volcano, Nicaragua.
Rebecca L. Wagner, Naomi J. Farren, Jack Davison, Stuart Young, James R. Hopkins, Alastair C. Lewis, David C. Carslaw, and Marvin D. Shaw
Atmos. Meas. Tech., 14, 6083–6100, https://doi.org/10.5194/amt-14-6083-2021, https://doi.org/10.5194/amt-14-6083-2021, 2021
Short summary
Short summary
We describe the use of a selected-ion flow-tube mass spectrometer (SIFT-MS) in a mobile laboratory to provide on-road, high spatial and temporal measurements of CO2, CH4, multiple volatile organic compounds (VOCs) and other trace gases. Results are presented that highlight the potential of this platform for developing characterisation methods of different emissions sources in complex urban areas.
Brandon Bottorff, Emily Reidy, Levi Mielke, Sebastien Dusanter, and Philip S. Stevens
Atmos. Meas. Tech., 14, 6039–6056, https://doi.org/10.5194/amt-14-6039-2021, https://doi.org/10.5194/amt-14-6039-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is an important source of hydroxyl (OH) radicals, the primary oxidant in the atmosphere. Accurate measurements of HONO are thus important to understand the oxidative capacity of the atmosphere. A new instrument capable of measuring atmospheric nitrous acid (HONO) with high sensitivity is presented, utilizing laser photofragmentation of ambient HONO and subsequent detection of the OH radical fragment.
Federico Dallo, Daniele Zannoni, Jacopo Gabrieli, Paolo Cristofanelli, Francescopiero Calzolari, Fabrizio de Blasi, Andrea Spolaor, Dario Battistel, Rachele Lodi, Warren Raymond Lee Cairns, Ann Mari Fjæraa, Paolo Bonasoni, and Carlo Barbante
Atmos. Meas. Tech., 14, 6005–6021, https://doi.org/10.5194/amt-14-6005-2021, https://doi.org/10.5194/amt-14-6005-2021, 2021
Short summary
Short summary
Our work showed how the adoption of low-cost technology could be useful in environmental research and monitoring. We focused our work on tropospheric ozone, but we also showed how to make a general purpose low-cost sensing system which may be adapted and optimised to be used in many other case studies. Given the importance of providing quality data, we put a lot of effort in the sensor's calibration, and we believe that our results show how to exploit the potential of the low-cost technology.
Hongming Yi, Mathieu Cazaunau, Aline Gratien, Vincent Michoud, Edouard Pangui, Jean-Francois Doussin, and Weidong Chen
Atmos. Meas. Tech., 14, 5701–5715, https://doi.org/10.5194/amt-14-5701-2021, https://doi.org/10.5194/amt-14-5701-2021, 2021
Short summary
Short summary
HONO and NO2 play a crucial role in the atmospheric oxidation capacity that affects the regional air quality and global climate. Accurate measurements of HONO are challenging due to the drawback of existing detection methods. Calibration-free high-sensitivity direct, simultaneous measurements of NO2, HONO and CH2O with UV-IBBCEAS provide accurate and fast quantitative analysis of their concentration variation within their lifetime by intercomparison with NOx, FTIR and NitroMAC sensors.
Patrick Dewald, Raphael Dörich, Jan Schuladen, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5501–5519, https://doi.org/10.5194/amt-14-5501-2021, https://doi.org/10.5194/amt-14-5501-2021, 2021
Short summary
Short summary
Organic nitrates generated from the reaction between isoprene and the nitrate radical (ISOP-NITs) were detected via their thermal dissociation in heated quartz inlets to nitrogen dioxide monitored by cavity ring-down spectroscopy. The temperature-dependent dissociation profiles of ISOP-NITs in the presence of ozone (O3) are broad in contrast to narrow profiles of common reference compounds. We demonstrate that this broadening is caused by O3-assisted reactions of ISOP-NITs on quartz surfaces.
Erin R. Delaria, Jinsol Kim, Helen L. Fitzmaurice, Catherine Newman, Paul J. Wooldridge, Kevin Worthington, and Ronald C. Cohen
Atmos. Meas. Tech., 14, 5487–5500, https://doi.org/10.5194/amt-14-5487-2021, https://doi.org/10.5194/amt-14-5487-2021, 2021
Short summary
Short summary
The use of a dense network of low-cost CO2 sensors is an attractive option for measuring CO2 emissions in cities. However, these low-cost sensors are also subject to uncertainties. Here, we describe a novel method of field calibration for correcting temperature-related errors in the CO2 sensors deployed in the BEACO2N network. We show that with this temperature correction, we can achieve a sufficiently low network error to allow for the evaluation of CO2 emissions at a neighborhood scale.
Raphael Dörich, Philipp Eger, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5319–5332, https://doi.org/10.5194/amt-14-5319-2021, https://doi.org/10.5194/amt-14-5319-2021, 2021
Short summary
Short summary
We demonstrate in laboratory experiments that the formation of IOx anions (formed in reactions of I− with O3) or acetate anions (formed e.g. by the reaction of I− with peracetic acid) results in unexpected sensitivity of an iodide chemical ionisation mass spectrometer (I-CIMS) to HNO3 at a mass-to-charge ratio of 62. This helps explain observations of apparent high daytime levels of N2O5. Airborne measurements using I-CIMS confirm these conclusions.
Corinna Kloss, Vicheith Tan, J. Brian Leen, Garrett L. Madsen, Aaron Gardner, Xu Du, Thomas Kulessa, Johannes Schillings, Herbert Schneider, Stefanie Schrade, Chenxi Qiu, and Marc von Hobe
Atmos. Meas. Tech., 14, 5271–5297, https://doi.org/10.5194/amt-14-5271-2021, https://doi.org/10.5194/amt-14-5271-2021, 2021
Short summary
Short summary
We describe the innovative analyzer
AMICAfor airborne trace gas measurements by infrared spectroscopy. Its design makes it robust and allows for sensitive measurements. AMICA has been used on two different aircraft for measuring gases including carbonyl sulfide, carbon monoxide and ozone. With fairly simple adaptions, AMICA can measure many stable trace gases that absorb light in the infrared.
Sara M. Defratyka, Jean-Daniel Paris, Camille Yver-Kwok, Daniel Loeb, James France, Jon Helmore, Nigel Yarrow, Valérie Gros, and Philippe Bousquet
Atmos. Meas. Tech., 14, 5049–5069, https://doi.org/10.5194/amt-14-5049-2021, https://doi.org/10.5194/amt-14-5049-2021, 2021
Short summary
Short summary
We consider the possibility of using the CRDS Picarro G2201-i instrument, originally designed for isotopic CH4 and CO2, for measurements of ethane : methane in near-source conditions. The work involved laboratory tests, a controlled release experiment and mobile measurements. We show the potential of determining ethane : methane with 50 ppb ethane uncertainty. The instrument can correctly estimate the ratio in CH4 enhancements of 1 ppm and more, as can be found at strongly emitting sites.
Esther Borrás, Luis A. Tortajada-Genaro, Milagro Ródenas, Teresa Vera, Thomas Speak, Paul Seakins, Marvin D. Shaw, Alastair C. Lewis, and Amalia Muñoz
Atmos. Meas. Tech., 14, 4989–4999, https://doi.org/10.5194/amt-14-4989-2021, https://doi.org/10.5194/amt-14-4989-2021, 2021
Short summary
Short summary
This work presents promising results in the characterization of specific atmospheric pollutants (oxygenated VOCs) present at very low but highly relevant concentrations.
We carried out this research at EUPHORE facilities within the framework of the EUROCHAMP project. A new analytical method, with high robustness and precision, also clean in the use of solvents, low cost, and easily adaptable for use in mobile laboratories for air quality monitoring, is presented.
Chunmeng Li, Haichao Wang, Xiaorui Chen, Tianyu Zhai, Shiyi Chen, Xin Li, Limin Zeng, and Keding Lu
Atmos. Meas. Tech., 14, 4033–4051, https://doi.org/10.5194/amt-14-4033-2021, https://doi.org/10.5194/amt-14-4033-2021, 2021
Short summary
Short summary
We present a feasible instrument for the measurement of NO2, total peroxy nitrates (PNs, RO2NO2), and total alkyl nitrates (ANs, RONO2) in the atmosphere. The instrument samples sequentially from three channels at different temperature settings and then measures spectra using one cavity-enhanced absorption spectrometer. The concentrations are determined by spectral fitting and corrected using the lookup table method conveniently. The instrument will promote the study of PNs and ANs.
Romain Blot, Philippe Nedelec, Damien Boulanger, Pawel Wolff, Bastien Sauvage, Jean-Marc Cousin, Gilles Athier, Andreas Zahn, Florian Obersteiner, Dieter Scharffe, Hervé Petetin, Yasmine Bennouna, Hannah Clark, and Valérie Thouret
Atmos. Meas. Tech., 14, 3935–3951, https://doi.org/10.5194/amt-14-3935-2021, https://doi.org/10.5194/amt-14-3935-2021, 2021
Short summary
Short summary
A lack of information about temporal changes in measurement uncertainties is an area of concern for long-term trend studies of the key compounds which have a direct or indirect impact on climate change. The IAGOS program has measured O3 and CO within the troposphere and lower stratosphere for more than 25 years. In this study, we demonstrated that the IAGOS database can be treated as one continuous program and is therefore appropriate for studies of long-term trends.
Thomas Wagenhäuser, Andreas Engel, and Robert Sitals
Atmos. Meas. Tech., 14, 3923–3934, https://doi.org/10.5194/amt-14-3923-2021, https://doi.org/10.5194/amt-14-3923-2021, 2021
Short summary
Short summary
AirCore samplers are increasingly deployed to weather balloons to collect continuous atmospheric samples. We introduce a technique that can be used in situ to evaluate different data processing methods that are required to derive vertical trace gas profiles from AirCore measurements after sample recovery. Results from two test flights with a specific AirCore configuration provide evidence for systematic deviations in altitude attribution for the upper levels, which can be empirically corrected.
Cited articles
Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M.,
Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C.,
and Ravishankara, A. R.: Reactivity and loss mechanisms of NO3 and
N2O5 in a polluted marine environment: Results from in situ
measurements during New England Air Quality Study 2002, J. Geophys. Res.-Atmos., 111, D23S73,
https://doi.org/10.1029/2006jd007252, 2006.
Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., and Plane, J. M. C.:
Observations of the nitrate radical in the marine boundary layer, J. Atmos. Chem., 33,
129–154, https://doi.org/10.1023/a:1005917203307, 1999.
Allan, B. J., McFiggans, G., Plane, J. M. C., Coe, H., and McFadyen, G. G.:
The nitrate radical in the remote marine boundary layer, J. Geophys. Res.-Atmos., 105, 24191–24204,
https://doi.org/10.1029/2000jd900314, 2000.
Allan, D. W.: Statistics of atomic frequency standards, Proc. IEEE, 54, 221–230,
https://doi.org/10.1109/proc.1966.4634, 1966.
Asaf, D., Pedersen, D., Matveev, V., Peleg, M., Kern, C., Zingler, J.,
Platt, U., and Luria, M.: Long-term measurements of NO3 radical at a
semiarid urban site: 1. Extreme concentration events and their oxidation
capacity, Environ. Sci. Technol., 43, 9117–9123, https://doi.org/10.1021/es900798b, 2009.
Axson, J. L., Washenfelder, R. A., Kahan, T. F., Young, C. J., Vaida, V., and Brown, S. S.: Absolute ozone absorption cross section in the Huggins Chappuis minimum (350–470 nm) at 296 K, Atmos. Chem. Phys., 11, 11581–11590, https://doi.org/10.5194/acp-11-11581-2011, 2011.
Ayers, J. D., Apodaca, R. L., Simpson, W. R., and Baer, D. S.: Off-axis
cavity ringdown spectroscopy: application to atmospheric nitrate radical
detection, Appl. Opt., 44, 7239–7242, https://doi.org/10.1364/AO.44.007239, 2005.
Ball, S. M. and Jones, R. L.: Broad-band cavity ring-down spectroscopy,
Chem. Rev., 103, 5239–5262, https://doi.org/10.1021/cr020523k, 2003.
Ball, S. M., Langridge, J. M., and Jones, R. L.: Broadband cavity enhanced
absorption spectroscopy using light emitting diodes, Chem. Phys. Lett., 398, 68–74,
https://doi.org/10.1016/j.cplett.2004.08.144, 2004.
Barbero, A., Blouzon, C., Savarino, J., Caillon, N., Dommergue, A., and Grilli, R.: A compact incoherent broadband cavity-enhanced absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field applications, Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, 2020.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh
optical depth calculations, J. Atmos. Ocean. Technol., 16, 1854–1861,
https://doi.org/10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2,
1999.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O.
C., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and
Burrows, J. P.: Measurements of molecular absorption spectra with the
SCIAMACHY pre-flight model: instrument characterization and reference data
for atmospheric remote-sensing in the 230–2380 nm region, J. Photochem. Photobiol. A, 157, 167–184,
https://doi.org/10.1016/s1010-6030(03)00062-5, 2003.
Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry,
Chem. Soc. Rev., 41, 6405, https://doi.org/10.1039/c2cs35181a, 2012.
Brown, S. S., Stark, H., Ciciora, S. J., and Ravishankara, A. R.: In-situ
measurement of atmospheric NO3 and N2O5 via cavity ring-down
spectroscopy, Geophys. Res. Lett., 28, 3227–3230, https://doi.org/10.1029/2001gl013303, 2001.
Brown, S. S., Osthoff, H. D., Stark, H., Dubé, W. P., Ryerson, T. B.,
Warneke, C., De Gouw, J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F.
C., and Ravishankara, A. R.: Aircraft observations of daytime NO3 and
N2O5 and their implications for tropospheric chemistry, J. Photochem. Photobiol., A, 176,
270–278, https://doi.org/10.1016/j.jphotochem.2005.10.004, 2005.
Brown, S. S., Dubé, W. P., Tham, Y. J., Zha, Q., Xue, L., Poon, S.,
Wang, Z., Blake, D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime
chemistry at a high altitude site above Hong Kong, J. Geophys. Res.-Atmos., 121, 2457–2475,
https://doi.org/10.1002/2015jd024566, 2016.
Brown, S. S., An, H., Lee, M., Park, J.-H., Lee, S.-D., Fibiger, D. L.,
McDuffie, E. E., Dubé, W. P., Wagner, N. L., and Min, K.-E.: Cavity
enhanced spectroscopy for measurement of nitrogen oxides in the
Anthropocene: results from the Seoul tower during MAPS 2015, Faraday Discuss., 200, 529–557,
https://doi.org/10.1039/c7fd00001d, 2017.
Chang, Y., Zhang, Y., Tian, C., Zhang, S., Ma, X., Cao, F., Liu, X., Zhang, W., Kuhn, T., and Lehmann, M. F.: Nitrogen isotope fractionation during gas-to-particle conversion of NOx to in the atmosphere – implications for isotope-based NOx source apportionment, Atmos. Chem. Phys., 18, 11647–11661, https://doi.org/10.5194/acp-18-11647-2018, 2018.
Chen, J. and Venables, D. S.: A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases, Atmos. Meas. Tech., 4, 425–436, https://doi.org/10.5194/amt-4-425-2011, 2011.
Dorn, H.-P., Apodaca, R. L., Ball, S. M., Brauers, T., Brown, S. S., Crowley, J. N., Dubé, W. P., Fuchs, H., Häseler, R., Heitmann, U., Jones, R. L., Kiendler-Scharr, A., Labazan, I., Langridge, J. M., Meinen, J., Mentel, T. F., Platt, U., Pöhler, D., Rohrer, F., Ruth, A. A., Schlosser, E., Schuster, G., Shillings, A. J. L., Simpson, W. R., Thieser, J., Tillmann, R., Varma, R., Venables, D. S., and Wahner, A.: Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR, Atmos. Meas. Tech., 6, 1111–1140, https://doi.org/10.5194/amt-6-1111-2013, 2013.
Dubé, W. P., Brown, S. S., Osthoff, H. D., Nunley, M. R., Ciciora, S.
J., Paris, M. W., McLaughlin, R. J., and Ravishankara, A. R.: Aircraft
instrument for simultaneous, in situ measurement of NO3 and
N2O5 via pulsed cavity ring-down spectroscopy, Rev. Sci. Instrum., 77, 034101,
https://doi.org/10.1063/1.2176058, 2006.
Fiedler, S. E., Hese, A., and Ruth, A. A.: Incoherent broad-band
cavity-enhanced absorption spectroscopy, Chem. Phys. Lett., 371, 284–294,
https://doi.org/10.1016/s0009-2614(03)00263-x, 2003.
Flemmer, M. M. and Ham, J. E.: Cavity ring-down spectroscopy with an
automated control feedback system for investigating nitrate radical surface
chemistry reactions, Rev. Sci. Instrum., 83, 085103, https://doi.org/10.1063/1.4739768, 2012.
Foulds, A., Khan, M. A. H., Bannan, T. J., Percival, C. J., Lowenberg, M.
H., and Shallcross, D. E.: Abundance of NO3 derived organo-nitrates and
their importance in the atmosphere, Atmosphere, 12, 1381, https://doi.org/10.3390/atmos12111381,
2021.
Fouqueau, A., Cirtog, M., Cazaunau, M., Pangui, E., Zapf, P., Siour, G., Landsheere, X., Méjean, G., Romanini, D., and Picquet-Varrault, B.: Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO3 monitoring: characterization and validation for kinetic studies, Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, 2020.
Fuchs, H., Dubeì, W. P., Ciciora, S. J., and Brown, S. S.: Determination of
inlet transmission and conversion efficiencies for in situ measurements of
the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via
pulsed cavity ring-down spectroscopy, Anal. Chem., 80, 6010–6017,
https://doi.org/10.1021/ac8007253, 2008.
Gagliardi, G. and Loock, H. P. (Eds.): Cavity-enhanced spectroscopy and sensing, 179,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-40003-2, 2014.
Geyer, A., Ackermann, R., Dubois, R., Lohrmann, B., Müller, T., and
Platt, U.: Long-term observation of nitrate radicals in the continental
boundary layer near Berlin, Atmos. Environ., 35, 3619–3631,
https://doi.org/10.1016/s1352-2310(00)00549-5, 2001a.
Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.:
Chemistry and oxidation capacity of the nitrate radical in the continental
boundary layer near Berlin, J. Geophys. Res.-Atmos., 106, 8013–8025, https://doi.org/10.1029/2000jd900681,
2001b.
Geyer, A., Alicke, B., Ackermann, R., Martinez, M., Harder, H., Brune, W.,
di Carlo, P., Williams, E., Jobson, T., and Hall, S.: Direct observations of
daytime NO3: Implications for urban boundary layer chemistry, J. Geophys. Res.-Atmos., 108,
https://doi.org/10.1029/2002jd002967, 2003.
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E.
V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y.,
Wcisło, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon,
V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J.
M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin,
A. V., Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H.,
Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Canè, E.,
Császár, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J.,
Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann,
J. M., Horneman, V. M., Huang, X., Karman, T., Karns, J., Kassi, S.,
Kleiner, I., Kofman, V., Kwabia–Tchana, F., Lavrentieva, N. N., Lee, T. J.,
Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Y., Matt, W.,
Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Müller,
H. S. P., Naumenko, O. V., Perrin, A., Polyansky, O. L., Raddaoui, E.,
Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tóbiás, R.,
Sadiek, I., Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun,
S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G.
L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N.: The
HITRAN2020 molecular spectroscopic database, J. Quant. Spectrosc. Ra. Trans., 277, 107949,
https://doi.org/10.1016/j.jqsrt.2021.107949, 2022.
He, Q., Fang, Z., Shoshanim, O., Brown, S. S., and Rudich, Y.: Scattering and absorption cross sections of atmospheric gases in the ultraviolet–visible wavelength range (307–725 nm), Atmos. Chem. Phys., 21, 14927–14940, https://doi.org/10.5194/acp-21-14927-2021, 2021.
Heintz, F., Platt, U., Flentje, H., and Dubois, R.: Long-term observation of
nitrate radicals at the Tor Station, Kap Arkona (Rügen), J. Geophys. Res.-Atmos., 101,
22891–22910, https://doi.org/10.1029/96jd01549, 1996.
Hu, R.-Z., Wang, D., Xie, P.-H., Ling, L.-Y., Qin, M., Li, C.-X., and Liu,
J.-G.: Diode laser cavity ring-down spectroscopy for atmospheric NO3
radical measurement, Acta. Phys. Sin., 63, 110707, https://doi.org/10.7498/aps.63.110707, 2014.
Jordan, N., Ye, C. Z., Ghosh, S., Washenfelder, R. A., Brown, S. S., and Osthoff, H. D.: A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and Rayleigh scattering cross sections in the cyan region (470–540 nm), Atmos. Meas. Tech., 12, 1277–1293, https://doi.org/10.5194/amt-12-1277-2019, 2019.
Kahan, T. F., Washenfelder, R. A., Vaida, V., and Brown, S. S.:
Cavity-enhanced measurements of hydrogen peroxide absorption cross sections
from 353 to 410 nm, J. Phys. Chem., 116, 5941–5947, https://doi.org/10.1021/jp2104616, 2012.
Kennedy, O. J., Ouyang, B., Langridge, J. M., Daniels, M. J. S., Bauguitte, S., Freshwater, R., McLeod, M. W., Ironmonger, C., Sendall, J., Norris, O., Nightingale, R., Ball, S. M., and Jones, R. L.: An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2, Atmos. Meas. Tech., 4, 1759–1776, https://doi.org/10.5194/amt-4-1759-2011, 2011.
King, M., Dick, E., and Simpson, W.: A new method for the atmospheric
detection of the nitrate radical (NO3), Atmos. Environ., 34, 685–688,
https://doi.org/10.1016/S1352-2310(99)00418-5, 2000.
Kraus, S.: DOASIS a framework design for DOAS, PhD thesis, University of Heidelberg, Heidelberg, Germany, https://hci.iwr.uni-heidelberg.de/content/doasis-framework-design-doas (last access: 7 March 2022), 2006.
Langridge, J. M., Ball, S. M., Shillings, A. J. L., and Jones, R. L.: A
broadband absorption spectrometer using light emitting diodes for
ultrasensitive, in situ trace gas detection, Rev. Sci. Instrum., 79, 123110,
https://doi.org/10.1063/1.3046282, 2008.
Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl–VOC production, Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, 2018.
Li, S., Liu, W., Xie, P., Li, A., Qin, M., and Dou, K.: Measurements of
nighttime nitrate radical concentrations in the atmosphere by long-path
differential optical absorption spectroscopy, Adv. Atmos. Sci., 24, 875–880,
https://doi.org/10.1007/s00376-007-0875-2, 2007.
Li, Z., Hu, R., Xie, P., Chen, H., Wu, S., Wang, F., Wang, Y., Ling, L.,
Liu, J., and Liu, W.: Development of a portable cavity ring down
spectroscopy instrument for simultaneous, in situ measurement of NO3
and N2O5, Opt. Express, 26, A433–A449, https://doi.org/10.1364/OE.26.00A433, 2018.
Liang, S., Qin, M., Xie, P., Duan, J., Fang, W., He, Y., Xu, J., Liu, J., Li, X., Tang, K., Meng, F., Ye, K., Liu, J., and Liu, W.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment, Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019, 2019.
Lin, Y.-C., Zhang, Y.-L., Fan, M.-Y., and Bao, M.: Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China, Atmos. Chem. Phys., 20, 3999–4011, https://doi.org/10.5194/acp-20-3999-2020, 2020.
Liu, L., Bei, N., Hu, B., Wu, J., Liu, S., Li, X., Wang, R., Liu, Z., Shen,
Z., and Li, G.: Wintertime nitrate formation pathways in the north China
plain: Importance of N2O5 heterogeneous hydrolysis, Environ. Pollut., 266, 115287,
https://doi.org/10.1016/j.envpol.2020.115287, 2020.
Lu, X., Qin, M., Xie, P.-H., Duan, J., Fang, W., Ling, L.-Y., Shen, L.-L.,
Liu, J.-G., and Liu, W.-Q.: Measurements of atmospheric NO3 radicals in
Hefei using LED-based long path differential optical absorption
spectroscopy, Chin. Phys. B, 25, 024210, https://doi.org/10.1088/1674-1056/25/2/024210, 2016.
Matsumoto, J., Kosugi, N., Imai, H., and Kajii, Y.: Development of a
measurement system for nitrate radical and dinitrogen pentoxide using a
thermal conversion/laser-induced fluorescence technique, Rev. Sci. Instrum., 76, 064101,
https://doi.org/10.1063/1.1927098, 2005.
McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B. H., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.: On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah, Atmos. Chem. Phys., 19, 9287–9308, https://doi.org/10.5194/acp-19-9287-2019, 2019.
McLaren, R., Salmon, R. A., Liggio, J., Hayden, K. L., Anlauf, K. G., and
Leaitch, W. R.: Nighttime chemistry at a rural site in the Lower Fraser
Valley, Atmos. Environ., 38, 5837–5848, https://doi.org/10.1016/j.atmosenv.2004.03.074, 2004.
Mihelcic, D., Klemp, D., Müsgen, P., Pätz, H. W., and Volz-Thomas,
A.: Simultaneous measurements of peroxy and nitrate radicals at
Schauinsland, J. Atmos. Chem., 16, 313–335, https://doi.org/10.1007/bf01032628, 1993.
Min, K.-E., Washenfelder, R. A., Dubé, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J., Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor, Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, 2016.
Nakayama, T., Ide, T., Taketani, F., Kawai, M., Takahashi, K., and Matsumi,
Y.: Nighttime measurements of ambient N2O5, NO2, NO and
O3 in a sub-urban area, Toyokawa, Japan, Atmos. Environ., 42, 1995–2006,
https://doi.org/10.1016/j.atmosenv.2007.12.001, 2008.
Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017.
Noxon, J. F., Norton, R. B., and Marovich, E.: NO3 in the troposphere,
Geophys. Res. Lett., 7, 125–128, https://doi.org/10.1029/GL007i002p00125, 1980.
Odame-Ankrah, C. A. and Osthoff, H. D.: A compact diode laser cavity
ring-down spectrometer for atmospheric measurements of NO3 and
N2O5 with automated zeroing and calibration, Appl. Spectrosc., 65, 1260–1268,
https://doi.org/10.1366/11-06384, 2011.
Osthoff, H. D., Sommariva, R., Baynard, T., Pettersson, A., Williams, E. J.,
Lerner, B. M., Roberts, J. M., Stark, H., Goldan, P. D., Kuster, W. C.,
Bates, T. S., Coffman, D., Ravishankara, A. R., and Brown, S. S.:
Observation of daytime N2O5 in the marine boundary layer during
New England Air Quality Study-Intercontinental Transport and Chemical
Transformation 2004, J. Geophys. Res.-Atmos., 111, D23S14, https://doi.org/10.1029/2006jd007593, 2006.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,
Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,
J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the
polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328,
https://doi.org/10.1038/ngeo177, 2008.
Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts, J. N. J.:
Detection of NO3 in the polluted troposphere by differential optical
absorption, Geophys. Res. Lett., 7, 89–92, 1980.
Prakash, N., Ramachandran, A., Varma, R., Chen, J., Mazzoleni, C., and Du,
K.: Near-infrared incoherent broadband cavity enhanced absorption
spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas
components, Analyst., 143, 3284–3291, https://doi.org/10.1039/c8an00819a, 2018.
Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.:
N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol,
Science, 321, 1059–1059, https://doi.org/10.1126/science.1158777, 2008.
Schuster, G., Labazan, I., and Crowley, J. N.: A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5, Atmos. Meas. Tech., 2, 1–13, https://doi.org/10.5194/amt-2-1-2009, 2009.
Shardanand, S. and Rao, A. P.: Absolute Rayleigh scattering cross sections of
gases and freons of stratospheric interest in the visible and ultraviolet
regions, NASA Technical Note, TN-D-8442, 1977.
Sheps, L.: Absolute ultraviolet absorption spectrum of a Criegee
intermediate CH2OO, J. Phys. Chem. Lett., 4, 4201–4205, https://doi.org/10.1021/jz402191w, 2013.
Simpson, W. R.: Continuous wave cavity ring-down spectroscopy applied toin
situdetection of dinitrogen pentoxide (N2O5), Rev. Sci. Instrum., 74, 3442–3452,
https://doi.org/10.1063/1.1578705, 2003.
Sobanski, N., Schuladen, J., Schuster, G., Lelieveld, J., and Crowley, J. N.: A five-channel cavity ring-down spectrometer for the detection of NO2, NO3, N2O5, total peroxy nitrates and total alkyl nitrates, Atmos. Meas. Tech., 9, 5103–5118, https://doi.org/10.5194/amt-9-5103-2016, 2016.
Sommariva, R., Pilling, M. J., Bloss, W. J., Heard, D. E., Lee, J. D., Fleming, Z. L., Monks, P. S., Plane, J. M. C., Saiz-Lopez, A., Ball, S. M., Bitter, M., Jones, R. L., Brough, N., Penkett, S. A., Hopkins, J. R., Lewis, A. C., and Read, K. A.: Night-time radical chemistry during the NAMBLEX campaign, Atmos. Chem. Phys., 7, 587–598, https://doi.org/10.5194/acp-7-587-2007, 2007.
Stark, H., Lerner, B. M., Schmitt, R., Jakoubek, R., Williams, E. J.,
Ryerson, T. B., Sueper, D. T., Parrish, D. D., and Fehsenfeld, F. C.:
Atmospheric in situ measurement of nitrate radical (NO3) and other
photolysis rates using spectroradiometry and filter radiometry, J. Geophys. Res.-Atmos., 112, D10S04,
https://doi.org/10.1029/2006jd007578, 2007.
Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., and Williams, E.: Vertical profiles of NO3, N2O5,
O3, and NOxin the nocturnal boundary layer: 1. Observations during
the Texas Air Quality Study 2000, J. Geophys. Res.-Atmos., 109, https://doi.org/10.1029/2003jd004209, 2004.
Suhail, K., George, M., Chandran, S., Varma, R., Venables, D. S., Wang, M.,
and Chen, J.: Open path incoherent broadband cavity-enhanced measurements of
NO3 radical and aerosol extinction in the North China Plain,
Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 24–31, https://doi.org/10.1016/j.saa.2018.09.023, 2019.
Thalman, R. and Volkamer, R.: Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode, Atmos. Meas. Tech., 3, 1797–1814, https://doi.org/10.5194/amt-3-1797-2010, 2010.
Thalman, R. and Volkamer, R.: Temperature dependent absorption
cross-sections of O2–O2 collision pairs between 340 and 630 nm
and at atmospherically relevant pressure, Phys. Chem. Chem. Phys., 15, 15371,
https://doi.org/10.1039/c3cp50968k, 2013.
Varma, R. M., Venables, D. S., Ruth, A. A., Heitmann, U., Schlosser, E., and
Dixneuf, S.: Long optical cavities for open-path monitoring of atmospheric
trace gases and aerosol extinction, Appl. Opt., 48, B159–B171,
https://doi.org/10.1364/ao.48.00b159, 2009.
Venables, D. S., Gherman, T., Orphal, J., Wenger, J. C., and Ruth, A. A.:
High sensitivity in situ monitoring of NO3 in an atmospheric simulation
chamber using incoherent broadband cavity-enhanced absorption spectroscopy,
Environ. Sci. Technol. , 40, 6758–6763, https://doi.org/10.1021/es061076j, 2006.
Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., Crutzen, P. J., Lelieveld, J., Perner, D., Berresheim, H., and Baboukas, E.: Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, Atmos. Chem. Phys., 4, 169–182, https://doi.org/10.5194/acp-4-169-2004, 2004.
Wagner, N. L., Dubé, W. P., Washenfelder, R. A., Young, C. J., Pollack, I. B., Ryerson, T. B., and Brown, S. S.: Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft, Atmos. Meas. Tech., 4, 1227–1240, https://doi.org/10.5194/amt-4-1227-2011, 2011.
Wang, D., Hu, R. Z., Xie, P. H., Liu, J. G., Liu, W. Q., Qin, M., Ling, L.
Y., Zeng, Y., Chen, H., Xing, X. B., Zhu, G. L., Wu, J., Duan, J., Lu, X.,
and Shen, L. L.: Diode laser cavity ring-down spectroscopy for in situ
measurement of NO3 radical in ambient air, J. Quant. Spectrosc. Radiat. Trans., 166, 23–29,
https://doi.org/10.1016/j.jqsrt.2015.07.005, 2015.
Wang, H., Chen, J., and Lu, K.: Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO3 and N2O5: experimental setup, lab characterizations, and field applications in a polluted urban environment, Atmos. Meas. Tech., 10, 1465–1479, https://doi.org/10.5194/amt-10-1465-2017, 2017.
Wang, H. and Lu, K.: Monitoring ambient nitrate radical by open-path
cavity-enhanced absorption spectroscopy, Anal. Chem., 91, 10687–10693,
https://doi.org/10.1021/acs.analchem.9b01971, 2019.
Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X.,
Chen, S., Dong, H., Liu, Y., Fang, X., Zeng, L., Hu, M., and Zhang, Y.:
NO3 and N2O5 chemistry at a suburban site during the
EXPLORE-YRD campaign in 2018, Atmos. Environ., 224, 117180,
https://doi.org/10.1016/j.atmosenv.2019.117180, 2020.
Wang, M., Varma, R., Venables, D. S., Zhou, W., and Chen, J.: A
demonstration of broadband cavity-enhanced absorption spectroscopy at
deep-ultraviolet wavelengths: Application to sensitive real-time detection
of the aromatic pollutants benzene, toluene, and xylene, Anal. Chem., 94, 4286–4293,
https://doi.org/10.1021/acs.analchem.1c04940, 2022.
Wang, S., Shi, C., Zhou, B., Zhao, H., Wang, Z., Yang, S., and Chen, L.:
Observation of NO3 radicals over Shanghai, China, Atmos. Environ., 70,
401–409, https://doi.org/10.1016/j.atmosenv.2013.01.022, 2013.
Wang, X., Wang, T., Yan, C., Tham, Y. J., Xue, L., Xu, Z., and Zha, Q.: Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon?, Atmos. Meas. Tech., 7, 1–12, https://doi.org/10.5194/amt-7-1-2014, 2014.
Washenfelder, R. A., Langford, A. O., Fuchs, H., and Brown, S. S.: Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer, Atmos. Chem. Phys., 8, 7779–7793, https://doi.org/10.5194/acp-8-7779-2008, 2008.
Werle, P., MuCke, R., and Slemr, F.: The limits of signal averaging in
atmospheric trace-gas monitoring by tunable diode-laser absorption
spectroscopy (TDLAS), Appl. Phys. B-Photo., 57, 131–139, https://doi.org/10.1007/bf00425997, 1993.
Winer, A. M., Atkinson, R., and Pitts, J. N.: Gaseous nitrate radical:
Possible nighttime atmospheric sink for biogenic organic compounds,
Science, 224, 156–159, https://doi.org/10.1126/science.224.4645.156, 1984.
Wood, E. C., Wooldridge, P. J., Freese, J. H., Albrecht, T., and Cohen, R.
C.: Prototype for in situ detection of atmospheric NO3 and
N2O5 via laser-induced fluorescence, Environ. Sci. Technol., 37, 5732–5738,
https://doi.org/10.1021/es034507w, 2003.
Wu, H., Chen, J., Liu, A. W., Hu, S. M., and Zhang, J. S.: Cavity ring-down
spectroscopy measurements of ambient NO3 and N2O5 dagger,
Chinese J. Chem. Phys., 33, 1–7, https://doi.org/10.1063/1674-0068/cjcp1910173, 2020.
Wu, T., Coeur-Tourneur, C., Dhont, G., Cassez, A., Fertein, E., He, X., and
Chen, W.: Simultaneous monitoring of temporal profiles of NO3, NO2
and O3 by incoherent broadband cavity enhanced absorption spectroscopy
for atmospheric applications, J. Quant. Spectrosc. Radiat. Trans., 133, 199-205,
https://doi.org/10.1016/j.jqsrt.2013.08.002, 2014.
Yokelson, R. J., Burkholder, J. B., Fox, R. W., Talukdar, R. K., and
Ravishankara, A. R.: Temperature dependence of the NO3 absorption
spectrum, J. Phys. Chem., 98, 13144-13150, https://doi.org/10.1021/j100101a009, 1994.
Young, I. A. K., Murray, C., Blaum, C. M., Cox, R. A., Jones, R. L., and
Pope, F. D.: Temperature dependent structured absorption spectra of
molecular chlorine, Phys. Chem. Chem. Phys., 13, 15318, https://doi.org/10.1039/c1cp21337g, 2011.
Young, I. A. K., Jones, R. L., and Pope, F. D.: The UV and visible spectra
of chlorine peroxide: Constraining the atmospheric photolysis rate,
Geophys. Res. Lett., 41, 1781–1788, https://doi.org/10.1002/2013gl058626, 2014.
Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, 2018.
Short summary
We describe our vibration-resistant instrument for measuring ambient NO3, NO2, and H2O based on cavity-enhanced absorption spectroscopy. By simultaneous retrieval of H2O with the other species using a measured H2O absorption spectrum, direct quantifications among all species are possible without any pre-treatment for H2O. Our instrument achieves the effective light path to ~101.5 km, which allows the sensitive measurements of NO3 and NO2 as 1.41 pptv and 6.92 ppbv (1σ) in 1 s.
We describe our vibration-resistant instrument for measuring ambient NO3, NO2, and H2O based on...