Articles | Volume 15, issue 15
https://doi.org/10.5194/amt-15-4473-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-4473-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a broadband cavity-enhanced absorption spectrometer for simultaneous measurements of ambient NO3, NO2, and H2O
Woohui Nam
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, South Korea
Changmin Cho
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, South Korea
Begie Perdigones
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, South Korea
Tae Siek Rhee
Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
Kyung-Eun Min
CORRESPONDING AUTHOR
School of Earth Sciences and Environmental Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, South Korea
Related authors
No articles found.
Andre Schaum, Kelvin Bates, Kyung-Eun Min, Faith Myers, Emmaline Longnecker, Manjula Canagaratna, Mitchell Alton, and Paul Ziemann
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-23, https://doi.org/10.5194/ar-2025-23, 2025
Preprint under review for AR
Short summary
Short summary
Organic aerosols consist of complex chemical mixtures that are challenging to characterize using chemical ionization mass spectrometry alone. This study presents a method for coupling liquid chromatography and chemical ionization mass spectrometry for offline analysis of organic aerosols. Evaluation of the method using standards and laboratory-generated and field-collected organic aerosols showed that it can provide detailed characterization of environmentally relevant mixtures.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024, https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Short summary
Delving into CO dynamics from the East Sea to the Bering Sea, our study unveils the influence of physical transport on CO budgets. By measuring CO concentrations and parameters, we elucidate the interplay between biological and physical processes, highlighting the role of lateral transport in shaping CO distributions. Our findings underscore the importance of considering both biogeochemical and physical drivers in understanding marine carbon fluxes.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Chem. Phys., 23, 2003–2033, https://doi.org/10.5194/acp-23-2003-2023, https://doi.org/10.5194/acp-23-2003-2023, 2023
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. Complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlight a still incomplete understanding of the paths leading to the formation of the OH radical, which has been observed in several other environments as well and needs to be further investigated.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022, https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model–measurement discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Kyung-Eun Min, Junphil Mun, Begie Perdigones, Soojin Lee, and Kyung-Hwan Kwak
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-205, https://doi.org/10.5194/acp-2022-205, 2022
Revised manuscript not accepted
Short summary
Short summary
For knowing the accurate amount of human-induced CO2, emission strengths of individual activities were assessed via direct eddy-covariance observations at urban-atmosphere interface. This work extracted emission factors (EFs) with minimized seasonal effects through day of the week difference with varying wind sectors. Our work urges the need for not only emission inventory validation but also seasonal bias free EFs estimations for establishing effective climate mitigation strategies.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Luisa Hantschke, Anna Novelli, Birger Bohn, Changmin Cho, David Reimer, Franz Rohrer, Ralf Tillmann, Marvin Glowania, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, https://doi.org/10.5194/acp-21-12665-2021, 2021
Short summary
Short summary
The reactions of Δ3-carene with ozone and the hydroxyl radical (OH) and the photolysis and OH reaction of caronaldehyde were investigated in the simulation chamber SAPHIR. Reaction rate constants of these reactions were determined. Caronaldehyde yields of the ozonolysis and OH reaction were determined. The organic nitrate yield of the reaction of Δ3-carene and caronaldehyde-derived peroxy radicals with NO was determined. The ROx budget (ROx = OH+HO2+RO2) was also investigated.
Changmin Cho, Andreas Hofzumahaus, Hendrik Fuchs, Hans-Peter Dorn, Marvin Glowania, Frank Holland, Franz Rohrer, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech., 14, 1851–1877, https://doi.org/10.5194/amt-14-1851-2021, https://doi.org/10.5194/amt-14-1851-2021, 2021
Short summary
Short summary
This study describes the implementation and characterization of the chemical modulation reactor (CMR) used in the laser-induced fluorescence instrument of the Forschungszentrum Jülich. The CMR allows for interference-free OH radical measurement in ambient air. During a field campaign in a rural environment, the observed interference was mostly below the detection limit of the instrument and fully explained by the known ozone interference.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Cited articles
Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M.,
Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C.,
and Ravishankara, A. R.: Reactivity and loss mechanisms of NO3 and
N2O5 in a polluted marine environment: Results from in situ
measurements during New England Air Quality Study 2002, J. Geophys. Res.-Atmos., 111, D23S73,
https://doi.org/10.1029/2006jd007252, 2006.
Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., and Plane, J. M. C.:
Observations of the nitrate radical in the marine boundary layer, J. Atmos. Chem., 33,
129–154, https://doi.org/10.1023/a:1005917203307, 1999.
Allan, B. J., McFiggans, G., Plane, J. M. C., Coe, H., and McFadyen, G. G.:
The nitrate radical in the remote marine boundary layer, J. Geophys. Res.-Atmos., 105, 24191–24204,
https://doi.org/10.1029/2000jd900314, 2000.
Allan, D. W.: Statistics of atomic frequency standards, Proc. IEEE, 54, 221–230,
https://doi.org/10.1109/proc.1966.4634, 1966.
Asaf, D., Pedersen, D., Matveev, V., Peleg, M., Kern, C., Zingler, J.,
Platt, U., and Luria, M.: Long-term measurements of NO3 radical at a
semiarid urban site: 1. Extreme concentration events and their oxidation
capacity, Environ. Sci. Technol., 43, 9117–9123, https://doi.org/10.1021/es900798b, 2009.
Axson, J. L., Washenfelder, R. A., Kahan, T. F., Young, C. J., Vaida, V., and Brown, S. S.: Absolute ozone absorption cross section in the Huggins Chappuis minimum (350–470 nm) at 296 K, Atmos. Chem. Phys., 11, 11581–11590, https://doi.org/10.5194/acp-11-11581-2011, 2011.
Ayers, J. D., Apodaca, R. L., Simpson, W. R., and Baer, D. S.: Off-axis
cavity ringdown spectroscopy: application to atmospheric nitrate radical
detection, Appl. Opt., 44, 7239–7242, https://doi.org/10.1364/AO.44.007239, 2005.
Ball, S. M. and Jones, R. L.: Broad-band cavity ring-down spectroscopy,
Chem. Rev., 103, 5239–5262, https://doi.org/10.1021/cr020523k, 2003.
Ball, S. M., Langridge, J. M., and Jones, R. L.: Broadband cavity enhanced
absorption spectroscopy using light emitting diodes, Chem. Phys. Lett., 398, 68–74,
https://doi.org/10.1016/j.cplett.2004.08.144, 2004.
Barbero, A., Blouzon, C., Savarino, J., Caillon, N., Dommergue, A., and Grilli, R.: A compact incoherent broadband cavity-enhanced absorption spectrometer for trace detection of nitrogen oxides, iodine oxide and glyoxal at levels below parts per billion for field applications, Atmos. Meas. Tech., 13, 4317–4331, https://doi.org/10.5194/amt-13-4317-2020, 2020.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., and Slusser, J. R.: On Rayleigh
optical depth calculations, J. Atmos. Ocean. Technol., 16, 1854–1861,
https://doi.org/10.1175/1520-0426(1999)016<1854:orodc>2.0.co;2,
1999.
Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O.
C., Vogel, A., Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and
Burrows, J. P.: Measurements of molecular absorption spectra with the
SCIAMACHY pre-flight model: instrument characterization and reference data
for atmospheric remote-sensing in the 230–2380 nm region, J. Photochem. Photobiol. A, 157, 167–184,
https://doi.org/10.1016/s1010-6030(03)00062-5, 2003.
Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry,
Chem. Soc. Rev., 41, 6405, https://doi.org/10.1039/c2cs35181a, 2012.
Brown, S. S., Stark, H., Ciciora, S. J., and Ravishankara, A. R.: In-situ
measurement of atmospheric NO3 and N2O5 via cavity ring-down
spectroscopy, Geophys. Res. Lett., 28, 3227–3230, https://doi.org/10.1029/2001gl013303, 2001.
Brown, S. S., Osthoff, H. D., Stark, H., Dubé, W. P., Ryerson, T. B.,
Warneke, C., De Gouw, J. A., Wollny, A. G., Parrish, D. D., Fehsenfeld, F.
C., and Ravishankara, A. R.: Aircraft observations of daytime NO3 and
N2O5 and their implications for tropospheric chemistry, J. Photochem. Photobiol., A, 176,
270–278, https://doi.org/10.1016/j.jphotochem.2005.10.004, 2005.
Brown, S. S., Dubé, W. P., Tham, Y. J., Zha, Q., Xue, L., Poon, S.,
Wang, Z., Blake, D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime
chemistry at a high altitude site above Hong Kong, J. Geophys. Res.-Atmos., 121, 2457–2475,
https://doi.org/10.1002/2015jd024566, 2016.
Brown, S. S., An, H., Lee, M., Park, J.-H., Lee, S.-D., Fibiger, D. L.,
McDuffie, E. E., Dubé, W. P., Wagner, N. L., and Min, K.-E.: Cavity
enhanced spectroscopy for measurement of nitrogen oxides in the
Anthropocene: results from the Seoul tower during MAPS 2015, Faraday Discuss., 200, 529–557,
https://doi.org/10.1039/c7fd00001d, 2017.
Chang, Y., Zhang, Y., Tian, C., Zhang, S., Ma, X., Cao, F., Liu, X., Zhang, W., Kuhn, T., and Lehmann, M. F.: Nitrogen isotope fractionation during gas-to-particle conversion of NOx to in the atmosphere – implications for isotope-based NOx source apportionment, Atmos. Chem. Phys., 18, 11647–11661, https://doi.org/10.5194/acp-18-11647-2018, 2018.
Chen, J. and Venables, D. S.: A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases, Atmos. Meas. Tech., 4, 425–436, https://doi.org/10.5194/amt-4-425-2011, 2011.
Dorn, H.-P., Apodaca, R. L., Ball, S. M., Brauers, T., Brown, S. S., Crowley, J. N., Dubé, W. P., Fuchs, H., Häseler, R., Heitmann, U., Jones, R. L., Kiendler-Scharr, A., Labazan, I., Langridge, J. M., Meinen, J., Mentel, T. F., Platt, U., Pöhler, D., Rohrer, F., Ruth, A. A., Schlosser, E., Schuster, G., Shillings, A. J. L., Simpson, W. R., Thieser, J., Tillmann, R., Varma, R., Venables, D. S., and Wahner, A.: Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR, Atmos. Meas. Tech., 6, 1111–1140, https://doi.org/10.5194/amt-6-1111-2013, 2013.
Dubé, W. P., Brown, S. S., Osthoff, H. D., Nunley, M. R., Ciciora, S.
J., Paris, M. W., McLaughlin, R. J., and Ravishankara, A. R.: Aircraft
instrument for simultaneous, in situ measurement of NO3 and
N2O5 via pulsed cavity ring-down spectroscopy, Rev. Sci. Instrum., 77, 034101,
https://doi.org/10.1063/1.2176058, 2006.
Fiedler, S. E., Hese, A., and Ruth, A. A.: Incoherent broad-band
cavity-enhanced absorption spectroscopy, Chem. Phys. Lett., 371, 284–294,
https://doi.org/10.1016/s0009-2614(03)00263-x, 2003.
Flemmer, M. M. and Ham, J. E.: Cavity ring-down spectroscopy with an
automated control feedback system for investigating nitrate radical surface
chemistry reactions, Rev. Sci. Instrum., 83, 085103, https://doi.org/10.1063/1.4739768, 2012.
Foulds, A., Khan, M. A. H., Bannan, T. J., Percival, C. J., Lowenberg, M.
H., and Shallcross, D. E.: Abundance of NO3 derived organo-nitrates and
their importance in the atmosphere, Atmosphere, 12, 1381, https://doi.org/10.3390/atmos12111381,
2021.
Fouqueau, A., Cirtog, M., Cazaunau, M., Pangui, E., Zapf, P., Siour, G., Landsheere, X., Méjean, G., Romanini, D., and Picquet-Varrault, B.: Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO3 monitoring: characterization and validation for kinetic studies, Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, 2020.
Fuchs, H., Dubeì, W. P., Ciciora, S. J., and Brown, S. S.: Determination of
inlet transmission and conversion efficiencies for in situ measurements of
the nocturnal nitrogen oxides, NO3, N2O5 and NO2, via
pulsed cavity ring-down spectroscopy, Anal. Chem., 80, 6010–6017,
https://doi.org/10.1021/ac8007253, 2008.
Gagliardi, G. and Loock, H. P. (Eds.): Cavity-enhanced spectroscopy and sensing, 179,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-40003-2, 2014.
Geyer, A., Ackermann, R., Dubois, R., Lohrmann, B., Müller, T., and
Platt, U.: Long-term observation of nitrate radicals in the continental
boundary layer near Berlin, Atmos. Environ., 35, 3619–3631,
https://doi.org/10.1016/s1352-2310(00)00549-5, 2001a.
Geyer, A., Alicke, B., Konrad, S., Schmitz, T., Stutz, J., and Platt, U.:
Chemistry and oxidation capacity of the nitrate radical in the continental
boundary layer near Berlin, J. Geophys. Res.-Atmos., 106, 8013–8025, https://doi.org/10.1029/2000jd900681,
2001b.
Geyer, A., Alicke, B., Ackermann, R., Martinez, M., Harder, H., Brune, W.,
di Carlo, P., Williams, E., Jobson, T., and Hall, S.: Direct observations of
daytime NO3: Implications for urban boundary layer chemistry, J. Geophys. Res.-Atmos., 108,
https://doi.org/10.1029/2002jd002967, 2003.
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E.
V., Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R. V., Tan, Y.,
Wcisło, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon,
V., Campargue, A., Chance, K. V., Coustenis, A., Drouin, B. J., Flaud, J.
M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin,
A. V., Perevalov, V. I., Rotger, M., Tennyson, J., Toon, G. C., Tran, H.,
Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Canè, E.,
Császár, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J.,
Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann,
J. M., Horneman, V. M., Huang, X., Karman, T., Karns, J., Kassi, S.,
Kleiner, I., Kofman, V., Kwabia–Tchana, F., Lavrentieva, N. N., Lee, T. J.,
Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Y., Matt, W.,
Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Müller,
H. S. P., Naumenko, O. V., Perrin, A., Polyansky, O. L., Raddaoui, E.,
Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tóbiás, R.,
Sadiek, I., Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun,
S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G.
L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N.: The
HITRAN2020 molecular spectroscopic database, J. Quant. Spectrosc. Ra. Trans., 277, 107949,
https://doi.org/10.1016/j.jqsrt.2021.107949, 2022.
He, Q., Fang, Z., Shoshanim, O., Brown, S. S., and Rudich, Y.: Scattering and absorption cross sections of atmospheric gases in the ultraviolet–visible wavelength range (307–725 nm), Atmos. Chem. Phys., 21, 14927–14940, https://doi.org/10.5194/acp-21-14927-2021, 2021.
Heintz, F., Platt, U., Flentje, H., and Dubois, R.: Long-term observation of
nitrate radicals at the Tor Station, Kap Arkona (Rügen), J. Geophys. Res.-Atmos., 101,
22891–22910, https://doi.org/10.1029/96jd01549, 1996.
Hu, R.-Z., Wang, D., Xie, P.-H., Ling, L.-Y., Qin, M., Li, C.-X., and Liu,
J.-G.: Diode laser cavity ring-down spectroscopy for atmospheric NO3
radical measurement, Acta. Phys. Sin., 63, 110707, https://doi.org/10.7498/aps.63.110707, 2014.
Jordan, N., Ye, C. Z., Ghosh, S., Washenfelder, R. A., Brown, S. S., and Osthoff, H. D.: A broadband cavity-enhanced spectrometer for atmospheric trace gas measurements and Rayleigh scattering cross sections in the cyan region (470–540 nm), Atmos. Meas. Tech., 12, 1277–1293, https://doi.org/10.5194/amt-12-1277-2019, 2019.
Kahan, T. F., Washenfelder, R. A., Vaida, V., and Brown, S. S.:
Cavity-enhanced measurements of hydrogen peroxide absorption cross sections
from 353 to 410 nm, J. Phys. Chem., 116, 5941–5947, https://doi.org/10.1021/jp2104616, 2012.
Kennedy, O. J., Ouyang, B., Langridge, J. M., Daniels, M. J. S., Bauguitte, S., Freshwater, R., McLeod, M. W., Ironmonger, C., Sendall, J., Norris, O., Nightingale, R., Ball, S. M., and Jones, R. L.: An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2, Atmos. Meas. Tech., 4, 1759–1776, https://doi.org/10.5194/amt-4-1759-2011, 2011.
King, M., Dick, E., and Simpson, W.: A new method for the atmospheric
detection of the nitrate radical (NO3), Atmos. Environ., 34, 685–688,
https://doi.org/10.1016/S1352-2310(99)00418-5, 2000.
Kraus, S.: DOASIS a framework design for DOAS, PhD thesis, University of Heidelberg, Heidelberg, Germany, https://hci.iwr.uni-heidelberg.de/content/doasis-framework-design-doas (last access: 7 March 2022), 2006.
Langridge, J. M., Ball, S. M., Shillings, A. J. L., and Jones, R. L.: A
broadband absorption spectrometer using light emitting diodes for
ultrasensitive, in situ trace gas detection, Rev. Sci. Instrum., 79, 123110,
https://doi.org/10.1063/1.3046282, 2008.
Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl–VOC production, Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, 2018.
Li, S., Liu, W., Xie, P., Li, A., Qin, M., and Dou, K.: Measurements of
nighttime nitrate radical concentrations in the atmosphere by long-path
differential optical absorption spectroscopy, Adv. Atmos. Sci., 24, 875–880,
https://doi.org/10.1007/s00376-007-0875-2, 2007.
Li, Z., Hu, R., Xie, P., Chen, H., Wu, S., Wang, F., Wang, Y., Ling, L.,
Liu, J., and Liu, W.: Development of a portable cavity ring down
spectroscopy instrument for simultaneous, in situ measurement of NO3
and N2O5, Opt. Express, 26, A433–A449, https://doi.org/10.1364/OE.26.00A433, 2018.
Liang, S., Qin, M., Xie, P., Duan, J., Fang, W., He, Y., Xu, J., Liu, J., Li, X., Tang, K., Meng, F., Ye, K., Liu, J., and Liu, W.: Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment, Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019, 2019.
Lin, Y.-C., Zhang, Y.-L., Fan, M.-Y., and Bao, M.: Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China, Atmos. Chem. Phys., 20, 3999–4011, https://doi.org/10.5194/acp-20-3999-2020, 2020.
Liu, L., Bei, N., Hu, B., Wu, J., Liu, S., Li, X., Wang, R., Liu, Z., Shen,
Z., and Li, G.: Wintertime nitrate formation pathways in the north China
plain: Importance of N2O5 heterogeneous hydrolysis, Environ. Pollut., 266, 115287,
https://doi.org/10.1016/j.envpol.2020.115287, 2020.
Lu, X., Qin, M., Xie, P.-H., Duan, J., Fang, W., Ling, L.-Y., Shen, L.-L.,
Liu, J.-G., and Liu, W.-Q.: Measurements of atmospheric NO3 radicals in
Hefei using LED-based long path differential optical absorption
spectroscopy, Chin. Phys. B, 25, 024210, https://doi.org/10.1088/1674-1056/25/2/024210, 2016.
Matsumoto, J., Kosugi, N., Imai, H., and Kajii, Y.: Development of a
measurement system for nitrate radical and dinitrogen pentoxide using a
thermal conversion/laser-induced fluorescence technique, Rev. Sci. Instrum., 76, 064101,
https://doi.org/10.1063/1.1927098, 2005.
McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B. H., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.: On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah, Atmos. Chem. Phys., 19, 9287–9308, https://doi.org/10.5194/acp-19-9287-2019, 2019.
McLaren, R., Salmon, R. A., Liggio, J., Hayden, K. L., Anlauf, K. G., and
Leaitch, W. R.: Nighttime chemistry at a rural site in the Lower Fraser
Valley, Atmos. Environ., 38, 5837–5848, https://doi.org/10.1016/j.atmosenv.2004.03.074, 2004.
Mihelcic, D., Klemp, D., Müsgen, P., Pätz, H. W., and Volz-Thomas,
A.: Simultaneous measurements of peroxy and nitrate radicals at
Schauinsland, J. Atmos. Chem., 16, 313–335, https://doi.org/10.1007/bf01032628, 1993.
Min, K.-E., Washenfelder, R. A., Dubé, W. P., Langford, A. O., Edwards, P. M., Zarzana, K. J., Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor, Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, 2016.
Nakayama, T., Ide, T., Taketani, F., Kawai, M., Takahashi, K., and Matsumi,
Y.: Nighttime measurements of ambient N2O5, NO2, NO and
O3 in a sub-urban area, Toyokawa, Japan, Atmos. Environ., 42, 1995–2006,
https://doi.org/10.1016/j.atmosenv.2007.12.001, 2008.
Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017.
Noxon, J. F., Norton, R. B., and Marovich, E.: NO3 in the troposphere,
Geophys. Res. Lett., 7, 125–128, https://doi.org/10.1029/GL007i002p00125, 1980.
Odame-Ankrah, C. A. and Osthoff, H. D.: A compact diode laser cavity
ring-down spectrometer for atmospheric measurements of NO3 and
N2O5 with automated zeroing and calibration, Appl. Spectrosc., 65, 1260–1268,
https://doi.org/10.1366/11-06384, 2011.
Osthoff, H. D., Sommariva, R., Baynard, T., Pettersson, A., Williams, E. J.,
Lerner, B. M., Roberts, J. M., Stark, H., Goldan, P. D., Kuster, W. C.,
Bates, T. S., Coffman, D., Ravishankara, A. R., and Brown, S. S.:
Observation of daytime N2O5 in the marine boundary layer during
New England Air Quality Study-Intercontinental Transport and Chemical
Transformation 2004, J. Geophys. Res.-Atmos., 111, D23S14, https://doi.org/10.1029/2006jd007593, 2006.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,
Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,
J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the
polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328,
https://doi.org/10.1038/ngeo177, 2008.
Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts, J. N. J.:
Detection of NO3 in the polluted troposphere by differential optical
absorption, Geophys. Res. Lett., 7, 89–92, 1980.
Prakash, N., Ramachandran, A., Varma, R., Chen, J., Mazzoleni, C., and Du,
K.: Near-infrared incoherent broadband cavity enhanced absorption
spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas
components, Analyst., 143, 3284–3291, https://doi.org/10.1039/c8an00819a, 2018.
Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.:
N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol,
Science, 321, 1059–1059, https://doi.org/10.1126/science.1158777, 2008.
Schuster, G., Labazan, I., and Crowley, J. N.: A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5, Atmos. Meas. Tech., 2, 1–13, https://doi.org/10.5194/amt-2-1-2009, 2009.
Shardanand, S. and Rao, A. P.: Absolute Rayleigh scattering cross sections of
gases and freons of stratospheric interest in the visible and ultraviolet
regions, NASA Technical Note, TN-D-8442, 1977.
Sheps, L.: Absolute ultraviolet absorption spectrum of a Criegee
intermediate CH2OO, J. Phys. Chem. Lett., 4, 4201–4205, https://doi.org/10.1021/jz402191w, 2013.
Simpson, W. R.: Continuous wave cavity ring-down spectroscopy applied toin
situdetection of dinitrogen pentoxide (N2O5), Rev. Sci. Instrum., 74, 3442–3452,
https://doi.org/10.1063/1.1578705, 2003.
Sobanski, N., Schuladen, J., Schuster, G., Lelieveld, J., and Crowley, J. N.: A five-channel cavity ring-down spectrometer for the detection of NO2, NO3, N2O5, total peroxy nitrates and total alkyl nitrates, Atmos. Meas. Tech., 9, 5103–5118, https://doi.org/10.5194/amt-9-5103-2016, 2016.
Sommariva, R., Pilling, M. J., Bloss, W. J., Heard, D. E., Lee, J. D., Fleming, Z. L., Monks, P. S., Plane, J. M. C., Saiz-Lopez, A., Ball, S. M., Bitter, M., Jones, R. L., Brough, N., Penkett, S. A., Hopkins, J. R., Lewis, A. C., and Read, K. A.: Night-time radical chemistry during the NAMBLEX campaign, Atmos. Chem. Phys., 7, 587–598, https://doi.org/10.5194/acp-7-587-2007, 2007.
Stark, H., Lerner, B. M., Schmitt, R., Jakoubek, R., Williams, E. J.,
Ryerson, T. B., Sueper, D. T., Parrish, D. D., and Fehsenfeld, F. C.:
Atmospheric in situ measurement of nitrate radical (NO3) and other
photolysis rates using spectroradiometry and filter radiometry, J. Geophys. Res.-Atmos., 112, D10S04,
https://doi.org/10.1029/2006jd007578, 2007.
Stutz, J., Alicke, B., Ackermann, R., Geyer, A., White, A., and Williams, E.: Vertical profiles of NO3, N2O5,
O3, and NOxin the nocturnal boundary layer: 1. Observations during
the Texas Air Quality Study 2000, J. Geophys. Res.-Atmos., 109, https://doi.org/10.1029/2003jd004209, 2004.
Suhail, K., George, M., Chandran, S., Varma, R., Venables, D. S., Wang, M.,
and Chen, J.: Open path incoherent broadband cavity-enhanced measurements of
NO3 radical and aerosol extinction in the North China Plain,
Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 24–31, https://doi.org/10.1016/j.saa.2018.09.023, 2019.
Thalman, R. and Volkamer, R.: Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode, Atmos. Meas. Tech., 3, 1797–1814, https://doi.org/10.5194/amt-3-1797-2010, 2010.
Thalman, R. and Volkamer, R.: Temperature dependent absorption
cross-sections of O2–O2 collision pairs between 340 and 630 nm
and at atmospherically relevant pressure, Phys. Chem. Chem. Phys., 15, 15371,
https://doi.org/10.1039/c3cp50968k, 2013.
Varma, R. M., Venables, D. S., Ruth, A. A., Heitmann, U., Schlosser, E., and
Dixneuf, S.: Long optical cavities for open-path monitoring of atmospheric
trace gases and aerosol extinction, Appl. Opt., 48, B159–B171,
https://doi.org/10.1364/ao.48.00b159, 2009.
Venables, D. S., Gherman, T., Orphal, J., Wenger, J. C., and Ruth, A. A.:
High sensitivity in situ monitoring of NO3 in an atmospheric simulation
chamber using incoherent broadband cavity-enhanced absorption spectroscopy,
Environ. Sci. Technol. , 40, 6758–6763, https://doi.org/10.1021/es061076j, 2006.
Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., Crutzen, P. J., Lelieveld, J., Perner, D., Berresheim, H., and Baboukas, E.: Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, Atmos. Chem. Phys., 4, 169–182, https://doi.org/10.5194/acp-4-169-2004, 2004.
Wagner, N. L., Dubé, W. P., Washenfelder, R. A., Young, C. J., Pollack, I. B., Ryerson, T. B., and Brown, S. S.: Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft, Atmos. Meas. Tech., 4, 1227–1240, https://doi.org/10.5194/amt-4-1227-2011, 2011.
Wang, D., Hu, R. Z., Xie, P. H., Liu, J. G., Liu, W. Q., Qin, M., Ling, L.
Y., Zeng, Y., Chen, H., Xing, X. B., Zhu, G. L., Wu, J., Duan, J., Lu, X.,
and Shen, L. L.: Diode laser cavity ring-down spectroscopy for in situ
measurement of NO3 radical in ambient air, J. Quant. Spectrosc. Radiat. Trans., 166, 23–29,
https://doi.org/10.1016/j.jqsrt.2015.07.005, 2015.
Wang, H., Chen, J., and Lu, K.: Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO3 and N2O5: experimental setup, lab characterizations, and field applications in a polluted urban environment, Atmos. Meas. Tech., 10, 1465–1479, https://doi.org/10.5194/amt-10-1465-2017, 2017.
Wang, H. and Lu, K.: Monitoring ambient nitrate radical by open-path
cavity-enhanced absorption spectroscopy, Anal. Chem., 91, 10687–10693,
https://doi.org/10.1021/acs.analchem.9b01971, 2019.
Wang, H., Chen, X., Lu, K., Hu, R., Li, Z., Wang, H., Ma, X., Yang, X.,
Chen, S., Dong, H., Liu, Y., Fang, X., Zeng, L., Hu, M., and Zhang, Y.:
NO3 and N2O5 chemistry at a suburban site during the
EXPLORE-YRD campaign in 2018, Atmos. Environ., 224, 117180,
https://doi.org/10.1016/j.atmosenv.2019.117180, 2020.
Wang, M., Varma, R., Venables, D. S., Zhou, W., and Chen, J.: A
demonstration of broadband cavity-enhanced absorption spectroscopy at
deep-ultraviolet wavelengths: Application to sensitive real-time detection
of the aromatic pollutants benzene, toluene, and xylene, Anal. Chem., 94, 4286–4293,
https://doi.org/10.1021/acs.analchem.1c04940, 2022.
Wang, S., Shi, C., Zhou, B., Zhao, H., Wang, Z., Yang, S., and Chen, L.:
Observation of NO3 radicals over Shanghai, China, Atmos. Environ., 70,
401–409, https://doi.org/10.1016/j.atmosenv.2013.01.022, 2013.
Wang, X., Wang, T., Yan, C., Tham, Y. J., Xue, L., Xu, Z., and Zha, Q.: Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: chemical interference or a real atmospheric phenomenon?, Atmos. Meas. Tech., 7, 1–12, https://doi.org/10.5194/amt-7-1-2014, 2014.
Washenfelder, R. A., Langford, A. O., Fuchs, H., and Brown, S. S.: Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer, Atmos. Chem. Phys., 8, 7779–7793, https://doi.org/10.5194/acp-8-7779-2008, 2008.
Werle, P., MuCke, R., and Slemr, F.: The limits of signal averaging in
atmospheric trace-gas monitoring by tunable diode-laser absorption
spectroscopy (TDLAS), Appl. Phys. B-Photo., 57, 131–139, https://doi.org/10.1007/bf00425997, 1993.
Winer, A. M., Atkinson, R., and Pitts, J. N.: Gaseous nitrate radical:
Possible nighttime atmospheric sink for biogenic organic compounds,
Science, 224, 156–159, https://doi.org/10.1126/science.224.4645.156, 1984.
Wood, E. C., Wooldridge, P. J., Freese, J. H., Albrecht, T., and Cohen, R.
C.: Prototype for in situ detection of atmospheric NO3 and
N2O5 via laser-induced fluorescence, Environ. Sci. Technol., 37, 5732–5738,
https://doi.org/10.1021/es034507w, 2003.
Wu, H., Chen, J., Liu, A. W., Hu, S. M., and Zhang, J. S.: Cavity ring-down
spectroscopy measurements of ambient NO3 and N2O5 dagger,
Chinese J. Chem. Phys., 33, 1–7, https://doi.org/10.1063/1674-0068/cjcp1910173, 2020.
Wu, T., Coeur-Tourneur, C., Dhont, G., Cassez, A., Fertein, E., He, X., and
Chen, W.: Simultaneous monitoring of temporal profiles of NO3, NO2
and O3 by incoherent broadband cavity enhanced absorption spectroscopy
for atmospheric applications, J. Quant. Spectrosc. Radiat. Trans., 133, 199-205,
https://doi.org/10.1016/j.jqsrt.2013.08.002, 2014.
Yokelson, R. J., Burkholder, J. B., Fox, R. W., Talukdar, R. K., and
Ravishankara, A. R.: Temperature dependence of the NO3 absorption
spectrum, J. Phys. Chem., 98, 13144-13150, https://doi.org/10.1021/j100101a009, 1994.
Young, I. A. K., Murray, C., Blaum, C. M., Cox, R. A., Jones, R. L., and
Pope, F. D.: Temperature dependent structured absorption spectra of
molecular chlorine, Phys. Chem. Chem. Phys., 13, 15318, https://doi.org/10.1039/c1cp21337g, 2011.
Young, I. A. K., Jones, R. L., and Pope, F. D.: The UV and visible spectra
of chlorine peroxide: Constraining the atmospheric photolysis rate,
Geophys. Res. Lett., 41, 1781–1788, https://doi.org/10.1002/2013gl058626, 2014.
Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen, Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R., Percival, C. J., Coe, H., and Sun, Y.: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, 2018.
Short summary
We describe our vibration-resistant instrument for measuring ambient NO3, NO2, and H2O based on cavity-enhanced absorption spectroscopy. By simultaneous retrieval of H2O with the other species using a measured H2O absorption spectrum, direct quantifications among all species are possible without any pre-treatment for H2O. Our instrument achieves the effective light path to ~101.5 km, which allows the sensitive measurements of NO3 and NO2 as 1.41 pptv and 6.92 ppbv (1σ) in 1 s.
We describe our vibration-resistant instrument for measuring ambient NO3, NO2, and H2O based on...