Articles | Volume 15, issue 16
https://doi.org/10.5194/amt-15-4663-2022
https://doi.org/10.5194/amt-15-4663-2022
Research article
 | 
16 Aug 2022
Research article |  | 16 Aug 2022

Modelling ultrafine particle growth in a flow tube reactor

Michael S. Taylor Jr., Devon N. Higgins, and Murray V. Johnston

Related authors

Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study
Lee Tiszenkel, Chris Stangl, Justin Krasnomowitz, Qi Ouyang, Huan Yu, Michael J. Apsokardu, Murray V. Johnston, and Shan-Hu Lee
Atmos. Chem. Phys., 19, 8915–8929, https://doi.org/10.5194/acp-19-8915-2019,https://doi.org/10.5194/acp-19-8915-2019, 2019
Short summary
Nanoparticle growth by particle-phase chemistry
Michael J. Apsokardu and Murray V. Johnston
Atmos. Chem. Phys., 18, 1895–1907, https://doi.org/10.5194/acp-18-1895-2018,https://doi.org/10.5194/acp-18-1895-2018, 2018
Short summary
Particle size dependence of biogenic secondary organic aerosol molecular composition
Peijun Tu and Murray V. Johnston
Atmos. Chem. Phys., 17, 7593–7603, https://doi.org/10.5194/acp-17-7593-2017,https://doi.org/10.5194/acp-17-7593-2017, 2017
Short summary
Identification and quantification of particle growth channels during new particle formation
M. R. Pennington, B. R. Bzdek, J. W. DePalma, J. N. Smith, A.-M. Kortelainen, L. Hildebrandt Ruiz, T. Petäjä, M. Kulmala, D. R. Worsnop, and M. V. Johnston
Atmos. Chem. Phys., 13, 10215–10225, https://doi.org/10.5194/acp-13-10215-2013,https://doi.org/10.5194/acp-13-10215-2013, 2013

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Quantifying functional group compositions of household fuel-burning emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024,https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
A new software toolkit for optical apportionment of carbonaceous aerosol
Tommaso Isolabella, Vera Bernardoni, Alessandro Bigi, Marco Brunoldi, Federico Mazzei, Franco Parodi, Paolo Prati, Virginia Vernocchi, and Dario Massabò
Atmos. Meas. Tech., 17, 1363–1373, https://doi.org/10.5194/amt-17-1363-2024,https://doi.org/10.5194/amt-17-1363-2024, 2024
Short summary
Estimating errors in vehicle secondary aerosol production factors due to oxidation flow reactor response time
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2692,https://doi.org/10.5194/egusphere-2023-2692, 2023
Short summary
Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models
Radhika A. Chipade and Mehul R. Pandya
Atmos. Meas. Tech., 16, 5443–5459, https://doi.org/10.5194/amt-16-5443-2023,https://doi.org/10.5194/amt-16-5443-2023, 2023
Short summary
An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023,https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary

Cited articles

Apsokardu, M. J. and Johnston, M. V.: Nanoparticle growth by particle-phase chemistry, Atmos. Chem. Phys., 18, 1895–1907, https://doi.org/10.5194/acp-18-1895-2018, 2018. 
Barsanti, K. C. and Pankow, J. F.: Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions-Part 3: Carboxylic and dicarboxylic acids, Atmos. Environ., 40, 6676–6686, https://doi.org/10.1016/j.atmosenv.2006.03.013, 2006. 
Bell, M., Davis, D. L., and Fletcher, T.: A retrospective assessment of mortality from the London smog episode of 1952: The role of influenza and pollution, Environ. Health Perspect., 112, 6–8, https://doi.org/10.1289/ehp.6539, 2004. 
Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D., Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R., Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol, Chem. Rev., 119, 3472–3509, https://doi.org/10.1021/acs.chemrev.8b00395, 2019. 
Chen, Q., Liu, Y., Donahue, N. M., Shilling, J. E., and Martin, S. T.: Particle-phase chemistry of secondary organic material: Modeled compared to measured O:C and H:C Elemental ratios provide constraints, Environ. Sci. Technol., 45, 4763–4770, https://doi.org/10.1021/es104398s, 2011. 
Download
Short summary
This modelling study investigates the complex growth kinetics of ultrafine particles in a flow tube reactor. When both surface- and volume-limited growth processes occur, the particle diameter growth rate changes as a function of time in the flow tube. We show that this growth can be represented by a parameter (growth factor, GF) which can be obtained experimentally from the outlet-minus-inlet particle diameter change without foreknowledge of the chemical growth processes involved.