Articles | Volume 15, issue 18
https://doi.org/10.5194/amt-15-5497-2022
https://doi.org/10.5194/amt-15-5497-2022
Research article
 | 
27 Sep 2022
Research article |  | 27 Sep 2022

A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example

Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden

Related authors

Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023,https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Use of machine learning and principal component analysis to retrieve nitrogen dioxide (NO2) with hyperspectral imagers and reduce noise in spectral fitting
Joanna Joiner, Sergey Marchenko, Zachary Fasnacht, Lok Lamsal, Can Li, Alexander Vasilkov, and Nickolay Krotkov
Atmos. Meas. Tech., 16, 481–500, https://doi.org/10.5194/amt-16-481-2023,https://doi.org/10.5194/amt-16-481-2023, 2023
Short summary
Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023,https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023,https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Evaluation of SO2, SO42− and an updated SO2 dry deposition parameterization in the United Kingdom Earth System Model
Catherine Hardacre, Jane P. Mulcahy, Richard J. Pope, Colin G. Jones, Steven T. Rumbold, Can Li, Colin Johnson, and Steven T. Turnock
Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021,https://doi.org/10.5194/acp-21-18465-2021, 2021
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024,https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary
The GeoCarb greenhouse gas retrieval algorithm: simulations and sensitivity to sources of uncertainty
Gregory R. McGarragh, Christopher W. O'Dell, Sean M. R. Crowell, Peter Somkuti, Eric B. Burgh, and Berrien Moore III
Atmos. Meas. Tech., 17, 1091–1121, https://doi.org/10.5194/amt-17-1091-2024,https://doi.org/10.5194/amt-17-1091-2024, 2024
Short summary
Airborne lidar measurements of atmospheric CO2 column concentrations to cloud tops made during the 2017 ASCENDS/ABoVE campaign
Jianping Mao, James B. Abshire, S. Randy Kawa, Xiaoli Sun, and Haris Riris
Atmos. Meas. Tech., 17, 1061–1074, https://doi.org/10.5194/amt-17-1061-2024,https://doi.org/10.5194/amt-17-1061-2024, 2024
Short summary
Airborne observation with a low-cost hyperspectral instrument: retrieval of NO2 vertical column densities (VCDs) and the satellite sub-grid variability over industrial point sources
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024,https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
A nonlinear data-driven approach to bias correction of XCO2 for NASA's OCO-2 ACOS version 10
William R. Keely, Steffen Mauceri, Sean Crowell, and Christopher W. O'Dell
Atmos. Meas. Tech., 16, 5725–5748, https://doi.org/10.5194/amt-16-5725-2023,https://doi.org/10.5194/amt-16-5725-2023, 2023
Short summary

Cited articles

Bhartia, P. K.: OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], Greenbelt, MD, USA, https://doi.org/10.5067/Aura/OMI/DATA2024, 2005. 
Castellanos, P. and da Silva, A.: A neural network correction to the scalar approximation in radiative transfer, J. Atmos. Ocean. Tech., 36, 819–832, https://doi.org/10.1175/JTECH-D-18-0003.1, 2019. 
Chan, K. L., Khorsandi, E., Liu, S., Baier, F., and Valks, P.: Estimation of surface NO2 concentrations over Germany from TROPOMI satellite observations using a machine learning method, Remote Sens., 13, 969, https://doi.org/10.3390/rs13050969, 2021. 
Chimot, J., Veefkind, J. P., Vlemmix, T., de Haan, J. F., Amiridis, V., Proestakis, E., Marinou, E., and Levelt, P. F.: An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O2 – O2 spectral band using a neural network approach, Atmos. Meas. Tech., 10, 783–809, https://doi.org/10.5194/amt-10-783-2017, 2017. 
De Santis, D., Petracca, I., Corradini, S., Guerrieri, L., Picchiani, M., Merucci, L., Stelitano, D., Del Frate, F., Prata, F., and Schiavon, G.: Volcanic SO2 near-real time retrieval using TROPOMI data and neural networks: The December 2018 Etna test case, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021, 8480–8483, https://doi.org/10.1109/IGARSS47720.2021.9554915, 2021. 
Download
Short summary
Satellite observations provide information on the sources of SO2, an important pollutant that affects both air quality and climate. However, these observations suffer from relatively poor data quality due to weak signals of SO2. Here, we use a machine learning technique to analyze satellite SO2 observations in order to reduce the noise and artifacts over relatively clean areas while keeping the signals near pollution sources. This leads to significant improvement in satellite SO2 data.