Articles | Volume 15, issue 22
https://doi.org/10.5194/amt-15-6545-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-15-6545-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Charles Nelson Helms
CORRESPONDING AUTHOR
Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
NASA Postdoctoral Program – Oak Ridge Associated Universities, Oak Ridge, TN, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, MD, USA
Stephen Joseph Munchak
Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Ali Tokay
Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
Claire Pettersen
Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI, USA
Related authors
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Brian C. Filipiak, David B. Wolff, Aaron Spaulding, Ali Tokay, Charles N. Helms, Adrian M. Loftus, Alexey V. Chibisov, Carl Schirtzinger, Mick J. Boulanger, Charanjit S. Pabla, Larry Bliven, Eun Yeol Kim, Francesc Junyent, V. Chandrasekar, Hein Thant, Branislav M. Notaros, Gustavo Britto Hupsel de Azevedo, and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-162, https://doi.org/10.5194/essd-2025-162, 2025
Preprint under review for ESSD
Short summary
Short summary
A GPM Ground Validation field campaign in Connecticut collected high-resolution microphysical and radar observations of winter precipitation. This field campaign was unique because there was a wide-ranging suite of instruments capable of observing all phases of precipitation co-located with comparable measurements. The observations provide an opportunity to verify and understand complex winter precipitation events through satellite data, microphysical processes, and numerical model simulations.
S. Joseph Munchak, Robert S. Schrom, Charles N. Helms, and Ali Tokay
Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, https://doi.org/10.5194/amt-15-1439-2022, 2022
Short summary
Short summary
The ability to measure snowfall with weather radar has greatly advanced with the development of techniques that utilize dual-polarization measurements, which provide information about the snow particle shape and orientation, and multi-frequency measurements, which provide information about size and density. This study combines these techniques with the NASA D3R radar, which provides dual-frequency polarimetric measurements, with data that were observed during the 2018 Winter Olympics.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
Atmos. Chem. Phys., 25, 9999–10026, https://doi.org/10.5194/acp-25-9999-2025, https://doi.org/10.5194/acp-25-9999-2025, 2025
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern United States. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Brian C. Filipiak, David B. Wolff, Aaron Spaulding, Ali Tokay, Charles N. Helms, Adrian M. Loftus, Alexey V. Chibisov, Carl Schirtzinger, Mick J. Boulanger, Charanjit S. Pabla, Larry Bliven, Eun Yeol Kim, Francesc Junyent, V. Chandrasekar, Hein Thant, Branislav M. Notaros, Gustavo Britto Hupsel de Azevedo, and Diego Cerrai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-162, https://doi.org/10.5194/essd-2025-162, 2025
Preprint under review for ESSD
Short summary
Short summary
A GPM Ground Validation field campaign in Connecticut collected high-resolution microphysical and radar observations of winter precipitation. This field campaign was unique because there was a wide-ranging suite of instruments capable of observing all phases of precipitation co-located with comparable measurements. The observations provide an opportunity to verify and understand complex winter precipitation events through satellite data, microphysical processes, and numerical model simulations.
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Short summary
Snow density is derived by collocated Micro-Rain Radar (MRR) and Parsivel (ICE-POP 2017/2018). We apply the particle size distribution from Parsivel to a T-matrix backscattering simulation and compare with ZHH from MRR. Bulk density and bulk water fractions are derived from comparing simulated and calculated ZHH. Retrieved bulk density is validated by comparing snowfall rate measurements from Pluvio and the Precipitation Imaging Package. Snowfall rate consistency confirms the algorithm.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
S. Joseph Munchak, Robert S. Schrom, Charles N. Helms, and Ali Tokay
Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, https://doi.org/10.5194/amt-15-1439-2022, 2022
Short summary
Short summary
The ability to measure snowfall with weather radar has greatly advanced with the development of techniques that utilize dual-polarization measurements, which provide information about the snow particle shape and orientation, and multi-frequency measurements, which provide information about size and density. This study combines these techniques with the NASA D3R radar, which provides dual-frequency polarimetric measurements, with data that were observed during the 2018 Winter Olympics.
Heather Guy, Ian M. Brooks, Ken S. Carslaw, Benjamin J. Murray, Von P. Walden, Matthew D. Shupe, Claire Pettersen, David D. Turner, Christopher J. Cox, William D. Neff, Ralf Bennartz, and Ryan R. Neely III
Atmos. Chem. Phys., 21, 15351–15374, https://doi.org/10.5194/acp-21-15351-2021, https://doi.org/10.5194/acp-21-15351-2021, 2021
Short summary
Short summary
We present the first full year of surface aerosol number concentration measurements from the central Greenland Ice Sheet. Aerosol concentrations here have a distinct seasonal cycle from those at lower-altitude Arctic sites, which is driven by large-scale atmospheric circulation. Our results can be used to help understand the role aerosols might play in Greenland surface melt through the modification of cloud properties. This is crucial in a rapidly changing region where observations are sparse.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Cited articles
Bliven, L.: GPM Ground Validation Precipitation Imaging Package (PIP) ICE POP V1, NASA Global Hydrology Resource Center DAAC [data set], Huntsville, Alabama, USA, https://doi.org/10.5067/GPMGV/ICEPOP/PIP/DATA101, 2020. a
Fitzgibbon, A. W. and Fisher, R. B.: A Buyer's Guide to Conic Fitting, in:
Proceedings of the British Machine Vision Conference, University of Birmingham, Birmingham, UK, 11–14 September 1995, BMVA
Press, pp. 513–522, https://doi.org/10.5244/C.9.51, 1995. a
Garrett, T. J., Fallgatter, C., Shkurko, K., and Howlett, D.: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall, Atmos. Meas. Tech., 5, 2625–2633, https://doi.org/10.5194/amt-5-2625-2012, 2012. a, b, c
Heymsfield, A. J. and Westbrook, C. D.: Advances in the estimation of ice
particle fall speeds using laboratory and field measurements, J. Atmos.
Sci., 67, 2469–2482, https://doi.org/10.1175/2010JAS3379.1, 2010. a
Huang, G.-J., Bringi, V. N., Cifelli, R., Hudak, D., and Petersen, W. A.: A
methodology to derive radar reflectivity-liquid equivalent snow rate
relations using C-band radar and a 2D video disdrometer, J. Atmos.
Oceanic Technol., 27, 637–651, https://doi.org/10.1175/2009JTECHA1284.1, 2010. a
Jameson, G.: Inequalities for the perimeter of an ellipse, Math. Gaz., 98, 227–234, https://doi.org/10.1017/S002555720000125X, 2014. a
Jiang, Z., Oue, M., Verlinde, J., Clothiaux, E. E., Aydin, K., Botta, G., and
Lu, Y.: What can we conclude about the real aspect ratios of ice particle
aggregates from two-dimensional images?, J. Appl. Meteor. Climatol., 56,
725–734, https://doi.org/10.1175/JAMC-D-16-0248.1, 2017. a
Korolev, A. and Isaac, G.: Roundness and Aspect Ratio of Particles in Ice
Clouds, J. Atmos. Sci., 60, 1795–1808,
https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2, 2003. a
Lee, G. and Kim, K.: International Collaborative Experiments for
PyeongChang 2018 Olympic and Paralympic winter games (ICE-POP 2018),
in: AGU Fall Meeting, San Francisco, CA, 9–13 December 2019, https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/579526 (last access: 14 November 2022), 2019. a
Leinonen, J., Grazioli, J., and Berne, A.: Reconstruction of the mass and geometry of snowfall particles from multi-angle snowflake camera (MASC) images, Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, 2021. a, b, c
Lim, K.-S. S., Chang, E.-C., Sun, R., Kim, K., Tapiador, F. J., and Lee, G.:
Evaluation of simulated winter precipitation using WRF-ARW during the ICE-POP
2018 field campaign, Weather Forecast., 35, 2199–2213,
https://doi.org/10.1175/WAF-D-19-0236.1, 2020. a
Locatelli, J. D. and Hobbs, P. V.: Fall speeds and masses of solid
precipitation particles, J. Geophys. Res., 79, 2185–2197,
https://doi.org/10.1029/JC079i015p02185, 1974. a
Matrosov, S. Y., Heymsfield, A. J., and Wang, Z.: Dual-frequency radar ratio of
nonspherical atmopsheric hydrometeors, Geophys. Res. Lett., 32, L13816,
https://doi.org/10.1029/2005GL023210, 2005. a
Munchak, S. J., Schrom, R. S., Helms, C. N., and Tokay, A.: Snow microphysical retrieval from the NASA D3R radar during ICE-POP 2018, Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, 2022. a
Newman, A. J., Kucera, P. A., and Bliven, L. F.: Presenting the snowflake video
imager (SVI), J. Atmos. Oceanic Technol., 26, 167–179,
https://doi.org/10.1175/2008JTECHA1148.1, 2009. a, b
Pettersen, C., Bliven, L. F., von Lerber, A., Wood, N. B., Kulie, M. S.,
Mateling, M. E., Moisseev, D. N., Munchak, S. J., Petersen, W. A., and Wolff,
D. B.: The Precipitation Imaging Package: Assessment of microphysical
and bulk characteristics of snow, Atmosphere, 11, 785,
https://doi.org/10.3390/atmos11080785, 2020. a, b, c
Pettersen, C., Bliven, L. F., Kulie, M. S., Wood, N. B., Shates, J. A.,
Anderson, J., Mateling, M. E., Petersen, W. A., von Lerber, A., and Wolff,
D. B.: The precipitation imaging package: Phase partitioning capabilities,
Remote Sens., 13, 2183, https://doi.org/10.3390/rs13112183, 2021. a, b
Schönhuber, M., Lammer, G., and Randeu, W. L.: The 2D-video-distrometer,
in: Precipitation: Advances in measurement, estimation and prediction,
edited by: Michaelides, S., Springer, 1st edn., pp. 3–31, https://doi.org/10.1007/978-3-540-77655-0, 2008. a
Shkurko, K., Garrett, T., and Gaustad, K.: Multi-Angle Snowflake Camera
Value-Added Product, DOE Office of
Science Atmospheric Radiation Measurement (ARM) Program, DOE/ARM Tech. Rep. DOE/SC-ARM-TR-187,
https://doi.org/10.2172/1342901, 2016. a, b
Stuefer, M. and Bailey, J.: Multi-Angle Snowflake Camera Instrument
Handbook, DOE Office of Science
Atmospheric Radiation Measurement (ARM) Program, DOE/ARM Tech. Rep. DOE/SC-ARM-TR-158, https://doi.org/10.2172/1261185, 2016. a
Tapiador, F. J., Villalba-Pradas, A., Navarro, A., García-Ortega, E., Lim,
K.-S. S., Ahn, K. D., and Lee, G.: Future directions in precipitation
science, Remote Sens., 13, 1074, https://doi.org/10.3390/rs13061074, 2021. a
Tyynelä, J., Leinonen, J., Moisseev, D., and Nousiainen, T.: Radar
Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft
Spheroid Models, J. Atmos. Oceanic Technol., 28, 1365–1372,
https://doi.org/10.1175/JTECH-D-11-00004.1, 2011. a
von Lerber, A., Moisseev, D., Bliven, L. F., Petersen, W., Harri, A.-M., and
Chandrasekar, V.: Microphysical properties of snow and their link to Ze-S
relations during BAECC 2014, J. Appl. Meteor. Climatol., 56, 1561–1582,
https://doi.org/10.1175/JAMC-D-16-0379.1, 2017.
a
Westbrook, C. D.: Rayleigh scattering by hexagonal ice crystals and the
interpretation of dual-polarization radar measurements, Q. J. Roy.
Meteor. Soc., 140, 2090–2096, https://doi.org/10.1002/qj.2262, 2014. a
Wood, N. B., L'Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity, Atmos. Meas. Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013, 2013. a
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
This study compares the techniques used to measure snowflake shape by three instruments: PIP,...