Articles | Volume 16, issue 1
https://doi.org/10.5194/amt-16-29-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-29-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
True eddy accumulation – Part 1: Solutions to the problem of non-vanishing mean vertical wind velocity
Bioclimatology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Lukas Siebicke
Bioclimatology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
Related authors
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 41–55, https://doi.org/10.5194/amt-16-41-2023, https://doi.org/10.5194/amt-16-41-2023, 2023
Short summary
Short summary
A new micrometeorological method to measure atmospheric exchange is proposed, and a prototype sampler is evaluated. The new method, called short-time eddy accumulation, is a variant of the eddy accumulation method, which is suited for use with slow gas analyzers. The new method enables adaptive time-varying accumulation intervals, which brings many advantages to flux measurements such as an improved dynamic range and the ability to run eddy accumulation in a continuous flow-through mode.
Beatriz P. Cazorla, Ana Meijide, Javier Cabello, Julio Peñas, Rodrigo Vargas, Javier Martínez-López, Leonardo Montagnani, Alexander Knohl, Lukas Siebicke, Benimiano Gioli, Jiří Dušek, Ladislav Šigut, Andreas Ibrom, Georg Wohlfahrt, Eugénie Paul-Limoges, Kathrin Fuchs, Antonio Manco, Marian Pavelka, Lutz Merbold, Lukas Hörtnagl, Pierpaolo Duce, Ignacio Goded, Kim Pilegaard, and Domingo Alcaraz-Segura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2835, https://doi.org/10.5194/egusphere-2025-2835, 2025
Short summary
Short summary
We assess whether satellite-derived Ecosystem Functional Types (EFTs) reflect spatial heterogeneity in carbon fluxes across Europe. Using Eddy Covariance data from 50 sites, we show that EFTs capture distinct Net Ecosystem Exchange dynamics and perform slightly better than PFTs. EFTs offer a scalable, annually updatable approach to monitor ecosystem functioning and its interannual variability.
Justus G. V. van Ramshorst, Alexander Knohl, José Ángel Callejas-Rodelas, Robert Clement, Timothy C. Hill, Lukas Siebicke, and Christian Markwitz
Atmos. Meas. Tech., 17, 6047–6071, https://doi.org/10.5194/amt-17-6047-2024, https://doi.org/10.5194/amt-17-6047-2024, 2024
Short summary
Short summary
In this work we present experimental field results of a lower-cost eddy covariance (LC-EC) system, which can measure the ecosystem exchange of carbon dioxide and water vapour with the atmosphere. During three field campaigns on a grassland and agroforestry grassland, we compared the LC-EC with a conventional eddy covariance (CON-EC) system. Our results show that LC-EC has the potential to measure EC fluxes at only approximately 25 % of the cost of a CON-EC system.
Anas Emad and Lukas Siebicke
Atmos. Meas. Tech., 16, 41–55, https://doi.org/10.5194/amt-16-41-2023, https://doi.org/10.5194/amt-16-41-2023, 2023
Short summary
Short summary
A new micrometeorological method to measure atmospheric exchange is proposed, and a prototype sampler is evaluated. The new method, called short-time eddy accumulation, is a variant of the eddy accumulation method, which is suited for use with slow gas analyzers. The new method enables adaptive time-varying accumulation intervals, which brings many advantages to flux measurements such as an improved dynamic range and the ability to run eddy accumulation in a continuous flow-through mode.
Jelka Braden-Behrens, Lukas Siebicke, and Alexander Knohl
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-398, https://doi.org/10.5194/bg-2020-398, 2020
Preprint withdrawn
Short summary
Short summary
We use directly measured isotopic compositions and isoforcing values in combination with meteorological data and PBL height information to gain a better understanding of the variability of the isotopic composition of H2Ov. We directly compare the measured changes in isotopic composition with isoforcing-related changes (driven by local evapotranspiration ET). We conclude that it is important to account for PBL height when interpreting isoforcing data.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Christian Markwitz, Alexander Knohl, and Lukas Siebicke
Biogeosciences, 17, 5183–5208, https://doi.org/10.5194/bg-17-5183-2020, https://doi.org/10.5194/bg-17-5183-2020, 2020
Short summary
Short summary
Agroforestry has been shown to alter the microclimate and to lead to higher carbon sequestration above ground and in the soil. In this study, we investigated the impact of agroforestry systems on system-scale evapotranspiration (ET) due to concerns about increased water losses to the atmosphere. Results showed small differences in annual sums of ET over agroforestry relative to monoculture systems, indicating that agroforestry in Germany can be a land use alternative to monoculture agriculture.
Cited articles
Baldocchi, D.: Measuring Fluxes of Trace Gases and Energy between Ecosystems
and the Atmosphere – the State and Future of the Eddy Covariance Method,
Global Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649, 2014. a
Baldocchi, D. D., Hicks, B. B., and Meyers, T. P.: Measuring
Biosphere-Atmosphere Exchanges of Biologically Related Gases with
Micrometeorological Methods, Ecology, 69, 1331–1340, https://doi.org/10.2307/1941631,
1988. a
Berg, L. K. and Stull, R. B.: Parameterization of Joint Frequency
Distributions of Potential Temperature and Water Vapor Mixing Ratio
in the Daytime Convective Boundary Layer, J. Atmos.
Sci., 61, 813–828,
https://doi.org/10.1175/1520-0469(2004)061<0813:POJFDO>2.0.CO;2, 2004. a
Bowling, D. R., Turnipseed, A. A., Delany, A. C., Baldocchi, D. D., Greenberg,
J. P., and Monson, R. K.: The Use of Relaxed Eddy Accumulation to Measure
Biosphere-Atmosphere Exchange of Isoprene and Other Biological Trace Gases,
Oecologia, 116, 306–315, https://doi.org/10.1007/s004420050592, 1998. a
Businger, J. A. and Oncley, S. P.: Flux Measurement with Conditional
Sampling, J. Atmos. Ocean. Technol., 7, 349–352,
https://doi.org/10.1175/1520-0426(1990)007<0349:FMWCS>2.0.CO;2, 1990. a, b, c, d
Chu, C. R., Parlange, M. B., Katul, G. G., and Albertson, J. D.: Probability
Density Functions of Turbulent Velocity and Temperature in the Atmospheric
Surface Layer, Water Resour. Res., 32, 1681–1688,
https://doi.org/10.1029/96WR00287, 1996. a
Desjardins, R. L.: Energy Budget by an Eddy Correlation Method, J. Appl. Meteorol., 16, 248–250,
https://doi.org/10.1175/1520-0450(1977)016<0248:EBBAEC>2.0.CO;2, 1977. a, b
Emad, A. and Siebicke, L.: Reproduction Data and Code for the Paper:
True Eddy Accumulation – Part 1: Solutions to the Problem of
Non-Vanishing Mean Vertical Wind Velocity, Zenodo [data set, code],
https://doi.org/10.5281/zenodo.7047610, 2022. a
Emad, A. and Siebicke, L.: True eddy accumulation – Part 2: Theory and experiment of the short-time eddy accumulation method,
Atmos. Meas. Tech., 16, 41–55, https://doi.org/10.5194/amt-16-41-2023, 2023. a
Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H.: A
Re-Evaluation of Long-Term Flux Measurement Techniques Part I:
Averaging and Coordinate Rotation, Bound. Lay. Meteorol., 107,
1–48, https://doi.org/10.1023/A:1021554900225, 2003. a
Foken, T. and Wichura, B.: Tools for Quality Assessment of Surface-Based Flux
Measurements, Agr. Forest Meteorol., 78, 83–105,
https://doi.org/10.1016/0168-1923(95)02248-1, 1996. a, b
Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.:
Post-Field Data Quality Control, Handbook of Micrometeorology, 29, 181–208,
https://doi.org/10.1007/1-4020-2265-4_9, 2004. a
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.:
Post-Field Data Quality Control, in: Handbook of Micrometeorology:
A Guide for Surface Flux Measurement and Analysis, edited by: Lee,
X., Massman, W., and Law, B., Atmospheric and Oceanographic Sciences
Library, 181–208, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/1-4020-2265-4_9, 2005. a
Foken, T., Aubinet, M., and Leuning, R.: The Eddy Covariance Method, in:
Eddy Covariance: A Practical Guide to Measurement and Data
Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer
Atmospheric Sciences, 1–19, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-2351-1_1, 2012a. a
Foken, T., Leuning, R., Oncley, S. R., Mauder, M., and Aubinet, M.: Corrections
and Data Quality Control, in: Eddy Covariance: A Practical Guide
to Measurement and Data Analysis, edited by: Aubinet, M., Vesala, T.,
and Papale, D., Springer Atmospheric Sciences, 85–131, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-2351-1_4,
2012b. a
Frenkiel, F. N. and Klebanoff, P. S.: Probability Distributions and
Correlations in a Turbulent Boundary Layer, The Phys. Fluids, 16,
725–737, https://doi.org/10.1063/1.1694421, 1973. a
Fuehrer, P. L. and Friehe, C. A.: Flux Corrections Revisited,
Bound. Lay. Meteorol., 102, 415–458, https://doi.org/10.1023/A:1013826900579,
2002. a
Greenhut, G. K. and Khalsa, S. J. S.: Updraft and Downdraft Events in the
Atmospheric Boundary Layer Over the Equatorial Pacific Ocean, J. Atmos. Sci., 39, 1803–1818,
https://doi.org/10.1175/1520-0469(1982)039<1803:UADEIT>2.0.CO;2, 1982. a
Gu, L., Massman, W. J., Leuning, R., Pallardy, S. G., Meyers, T., Hanson,
P. J., Riggs, J. S., Hosman, K. P., and Yang, B.: The Fundamental Equation of
Eddy Covariance and Its Application in Flux Measurements, Agr.
Forest Meteorol., 152, 135–148,
https://doi.org/10.1016/j.agrformet.2011.09.014, 2012. a, b
Heinesch, B., Yernaux, M., and Aubinet, M.: Some Methodological Questions
Concerning Advection Measurements: A Case Study, Bound. Lay. Meteorol.,
122, 457–478, https://doi.org/10.1007/s10546-006-9102-4, 2007. a
Hicks, B. B. and Baldocchi, D. D.: Measurement of Fluxes Over Land:
Capabilities, Origins, and Remaining Challenges, Bound. Lay.
Meteorol., 177, 365–394, https://doi.org/10.1007/s10546-020-00531-y, 2020. a
Hicks, B. B., Wesely, M. L., and Durham, J. L.: Critique of Methods to Measure
Dry Deposition Workshop Summary, Tech. Rep. PB-81126443; EPA-600/9-80-050,
Argonne National Lab., IL (USA), Environmental Protection Agency, Research
Triangle Park, NC (USA), 1980. a
Katsouvas, G. D., Helmis, C. G., and Wang, Q.: Quadrant Analysis of the Scalar
and Momentum Fluxes in the Stable Marine Atmospheric Surface Layer,
Bound. Lay. Meteorol., 124, 335–360, https://doi.org/10.1007/s10546-007-9169-6,
2007. a, b
Katul, G., Kuhn, G., Schieldge, J., and Hsieh, C.-I.: The Ejection-Sweep
Character of Scalar Fluxes in the Unstable Surface Layer,
Bound. Lay. Meteorol., 83, 1–26, https://doi.org/10.1023/A:1000293516830, 1997. a
Lee, X., Finnigan, J., and Paw U, K. T.: Coordinate Systems and Flux Bias
Error, in: Handbook of Micrometeorology: A Guide for Surface Flux
Measurement and Analysis, edited by: Lee, X., Massman, W., and Law, B.,
Atmospheric and Oceanographic Sciences Library, 33–66, Springer
Netherlands, Dordrecht, https://doi.org/10.1007/1-4020-2265-4_3, 2005. a
Lenschow, D. H., Mann, J., and Kristensen, L.: How Long Is Long Enough When
Measuring Fluxes and Other Turbulence Statistics?, J.
Atmos. Ocean. Technol., 11, 661–673,
https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2, 1994. a
Leone, F. C., Nelson, L. S., and Nottingham, R. B.: The Folded Normal
Distribution, Technometrics, 3, 543–550,
https://doi.org/10.1080/00401706.1961.10489974, 1961. a
McBean, G. A.: Comparison of the Turbulent Transfer Processes near the Surface,
Bound. Lay. Meteorol., 4, 265–274, https://doi.org/10.1007/BF02265237, 1973. a
Monin, A. S. and Obukhov, A. M.: Basic Laws of Turbulent Mixing in the Ground
Layer of the Atmosphere, Translated for Geophysics Research Directorate, AF
Cambridge Research Center... by the American meteorological Society, Tr. Akad. Nauk SSSR Geophiz. Inst.,
Boston, MA, 24, 163–187, 1954. a
Ohtaki, E.: On the Similarity in Atmospheric Fluctuations of Carbon Dioxide,
Water Vapor and Temperature over Vegetated Fields, Bound. Lay.
Meteorol., 32, 25–37, https://doi.org/10.1007/BF00120712, 1985. a
Pattey, E., Desjardins, R. L., and Rochette, P.: Accuracy of the Relaxed
Eddy-Accumulation Technique, Evaluated Using CO2 Flux Measurements,
Bound. Lay. Meteorol., 66, 341–355, https://doi.org/10.1007/BF00712728, 1993. a, b
Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B.: Correction
Of Eddy-Covariance Measurements Incorporating Both Advective Effects And
Density Fluxes, Bound. Lay. Meteorol., 97, 487–511,
https://doi.org/10.1023/A:1002786702909, 2000. a
Rannik, Ü., Vesala, T., Peltola, O., Novick, K. A., Aurela, M., Järvi,
L., Montagnani, L., Mölder, M., Peichl, M., Pilegaard, K., and
Mammarella, I.: Impact of Coordinate Rotation on Eddy Covariance Fluxes at
Complex Sites, Agr. Forest Meteorol., 287, 107940,
https://doi.org/10.1016/j.agrformet.2020.107940, 2020. a, b
Raupach, M. R.: Conditional Statistics of Reynolds Stress in Rough-Wall and
Smooth-Wall Turbulent Boundary Layers, J. Fluid Mechan., 108,
363–382, https://doi.org/10.1017/S0022112081002164, 1981. a
Rinne, J. and Ammann, C.: Disjunct Eddy Covariance Method, in: Eddy
Covariance: A Practical Guide to Measurement and Data
Analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer
Atmospheric Sciences, 291–307, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-2351-1_10, 2012. a
Rinne, H. J. I., Delany, A. C., Greenberg, J. P., and Guenther, A. B.: A True
Eddy Accumulation System for Trace Gas Fluxes Using Disjunct Eddy Sampling
Method, J. Geophys. Res.-Atmos., 105, 24791–24798,
https://doi.org/10.1029/2000JD900315, 2000. a
Rinne, J., Tuovinen, J.-P., Laurila, T., Hakola, H., Aurela, M., and Hypén,
H.: Measurements of Hydrocarbon Fluxes by a Gradient Method above a Northern
Boreal Forest, Agr. Forest Meteorol., 102, 25–37,
https://doi.org/10.1016/S0168-1923(00)00088-5, 2000. a
Siebicke, L. and Emad, A.: True eddy accumulation trace gas flux measurements: proof of concept, Atmos. Meas. Tech., 12, 4393–4420, https://doi.org/10.5194/amt-12-4393-2019, 2019. a
Sun, J.: Tilt Corrections over Complex Terrain and Their Implication for
CO2 Transport, Bound. Lay. Meteorol., 124, 143–159,
https://doi.org/10.1007/s10546-007-9186-5, 2007. a
Thomas, C. and Foken, T.: Flux Contribution of Coherent Structures and Its
Implications for the Exchange of Energy and Matter in a Tall Spruce Canopy,
Bound. Lay. Meteorol., 123, 317–337, https://doi.org/10.1007/s10546-006-9144-7,
2007.
a
Turnipseed, A. A., Pressley, S. N., Karl, T., Lamb, B., Nemitz, E., Allwine, E., Cooper, W. A., Shertz, S., and Guenther, A. B.: The use of disjunct eddy sampling methods for the determination of ecosystem level fluxes of trace gases, Atmos. Chem. Phys., 9, 981–994, https://doi.org/10.5194/acp-9-981-2009, 2009. a, b, c, d, e, f
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of Flux Measurements
for Density Effects Due to Heat and Water Vapour Transfer, Q. J. Roy. Meteorol. Soc., 106, 85–100,
https://doi.org/10.1002/qj.49710644707, 1980. a
Wesely, M. L.: Use of Variance Techniques to Measure Dry Air-Surface Exchange
Rates, Bound. Lay. Meteorol., 44, 13–31, https://doi.org/10.1007/BF00117291,
1988. a
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic Anemometer Tilt
Correction Algorithms, Bound. Lay. Meteorol., 99, 127–150,
https://doi.org/10.1023/A:1018966204465, 2001. a
Wyngaard, J. C. and Moeng, C.-H.: Parameterizing Turbulent Diffusion through
the Joint Probability Density, Bound. Lay. Meteorol., 60, 1–13,
https://doi.org/10.1007/BF00122059, 1992. a, b
Executive editor
The manuscript gives exceptional good insight into true eddy accumulation.
Short summary
The true eddy accumulation (TEA) method enables measuring atmospheric exchange with slow-response gas analyzers. TEA is formulated assuming ideal conditions with a zero mean vertical wind velocity during the averaging interval. This core assumption is rarely valid under field conditions. Here, we extend the TEA equation to accommodate nonideal conditions. The new equation allows constraining the systematic error term in the measured fluxes and the possibility to minimize or remove it.
The true eddy accumulation (TEA) method enables measuring atmospheric exchange with...