Articles | Volume 16, issue 17
https://doi.org/10.5194/amt-16-4015-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4015-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment
Alexis Lamothe
CORRESPONDING AUTHOR
Univ. Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP (Institute of Engineering and Management), IGE, 38000 Grenoble, France
Univ. Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP (Institute of Engineering and Management), IGE, 38000 Grenoble, France
Patrick Ginot
Univ. Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP (Institute of Engineering and Management), IGE, 38000 Grenoble, France
Lison Soussaintjean
Climate and Environmental Physics, Physics Institute and Oeschger
Centre for Climate Change Research, University of Bern, 3012 Bern,
Switzerland
Elsa Gautier
Univ. Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP (Institute of Engineering and Management), IGE, 38000 Grenoble, France
Pete D. Akers
Discipline of Geography, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
Nicolas Caillon
Univ. Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP (Institute of Engineering and Management), IGE, 38000 Grenoble, France
Joseph Erbland
Univ. Grenoble Alpes, CNRS, IRD, INRAE, Grenoble INP (Institute of Engineering and Management), IGE, 38000 Grenoble, France
Related authors
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025, https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions and atmospheric oxidation chemistry driven by human activity. However, UV-driven postdepositional processes can alter nitrate in snow, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in a southeastern Greenland ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Agnese Petteni, Mathieu Casado, Christophe Leroy-Dos Santos, Amaelle Landais, Niels Dutrievoz, Cécile Agosta, Pete D. Akers, Joel Savarino, Andrea Spolaor, Massimo Frezzotti, and Barbara Stenni
EGUsphere, https://doi.org/10.5194/egusphere-2025-3188, https://doi.org/10.5194/egusphere-2025-3188, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigated the isotopic composition of surface snow in a previously unexplored region of East Antarctica to understand how differences in air mass origin influence its variability. By comparing observations with model data, we validated the model and quantified the impact of post-depositional processes at the snow–atmosphere interface. Our results offer valuable insights for reconstructing past temperatures from ice cores.
Adrien Ooms, Mathieu Casado, Ghislain Picard, Laurent Arnaud, Maria Hörhold, Andrea Spolaor, Rita Traversi, Joel Savarino, Patrick Ginot, Pete Akers, Birthe Twarloh, and Valérie Masson-Delmotte
EGUsphere, https://doi.org/10.5194/egusphere-2025-3259, https://doi.org/10.5194/egusphere-2025-3259, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This work presents a new approach to the estimation of accumulation rates at Concordia Station, East-Antarctica, for the last 20 years, from a new data set of chemical tracers and snow micro-scale properties measured in a snow trench. Multi-annual and meter to decameter scale variability of accumulation rates are compared again in-situ measurements of surface laser scanner and stake farm, with very good agreement. This further constrains SMB estimation for Antarctica at high temporal resolution.
Lison Soussaintjean, Jochen Schmitt, Joël Savarino, J. Andy Menking, Edward J. Brook, Barbara Seth, Vladimir Lipenkov, Thomas Röckmann, and Hubertus Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3108, https://doi.org/10.5194/egusphere-2025-3108, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Nitrous oxide (N2O) produced in dust-rich Antarctic ice complicates the reconstruction of past atmospheric levels from ice core records. Using isotope analysis, we show that N2O forms from two nitrogen precursors, one being nitrate. For the first time, we demonstrate that the site preference (SP) of N2O reflects the isotopic difference between these precursors, not the production pathway, which challenges the common interpretation of SP.
Filip Pastierovic, Roberto Grilli, Nicolas Caillon, and Joel Savarino
EGUsphere, https://doi.org/10.5194/egusphere-2025-3115, https://doi.org/10.5194/egusphere-2025-3115, 2025
Short summary
Short summary
The development of an open detector based on absorption spectroscopy, enhanced by high-reflectivity mirrors, for the simultaneous measurement of NO2, IO, and CHOCHO is reported. The instrument shows good correlation with a closed system during both indoor and outdoor measurements. An open system is able to measure NO2, IO, and CHOCHO with high precision.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025, https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions and atmospheric oxidation chemistry driven by human activity. However, UV-driven postdepositional processes can alter nitrate in snow, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in a southeastern Greenland ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Marco Zanatta, Pia Bogert, Patrick Ginot, Yiwei Gong, Gholam Ali Hoshyaripour, Yaqiong Hu, Feng Jiang, Paolo Laj, Yanxia Li, Claudia Linke, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Nsikanabasi Silas Umo, Franziska Vogel, and Robert Wagner
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-12, https://doi.org/10.5194/ar-2025-12, 2025
Revised manuscript accepted for AR
Short summary
Short summary
Back carbon is an atmospheric pollutant from combustion, contributes to the Arctic warming. However, its properties change as it travels through the atmosphere, affecting its impact. We recreated Arctic transport conditions in a laboratory to study how black carbon evolves over time. Our findings show that temperature and altitude strongly influence its transformation, providing key insights for improving climate models and understanding Arctic pollution.
Brice Barret, Patrice Medina, Natalie Brett, Roman Pohorsky, Kathy S. Law, Slimane Bekki, Gilberto J. Fochesatto, Julia Schmale, Steve R. Arnold, Andrea Baccarini, Maurizio Busetto, Meeta Cesler-Maloney, Barbara D'Anna, Stefano Decesari, Jingqiu Mao, Gianluca Pappaccogli, Joel Savarino, Federico Scoto, and William R. Simpson
Atmos. Meas. Tech., 18, 1163–1184, https://doi.org/10.5194/amt-18-1163-2025, https://doi.org/10.5194/amt-18-1163-2025, 2025
Short summary
Short summary
The Fairbanks area experiences severe pollution episodes in winter because of enhanced emissions of pollutants trapped near the surface by strong temperature inversions. Low-cost sensors were deployed on board a car and a tethered balloon to measure the concentrations of gaseous pollutants (CO, O3, and NOx) in Fairbanks during winter 2022. Data calibration with reference measurements and machine learning methods enabled us to document pollution at the surface and power plant plumes aloft.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Agnese Petteni, Elise Fourré, Elsa Gautier, Azzurra Spagnesi, Roxanne Jacob, Pete D. Akers, Daniele Zannoni, Jacopo Gabrieli, Olivier Jossoud, Frédéric Prié, Amaëlle Landais, Titouan Tcheng, Barbara Stenni, Joel Savarino, Patrick Ginot, and Mathieu Casado
EGUsphere, https://doi.org/10.5194/egusphere-2024-3335, https://doi.org/10.5194/egusphere-2024-3335, 2025
Short summary
Short summary
Our research compares three CFA-CRDS systems from Venice, Paris, and Grenoble for measuring water isotopes in ice cores, crucial for reconstructing past climate. We quantify each system’s mixing and measurement noise effects, which impact the achievable resolution of isotope continuous records. Our findings reveal specific configurations and procedures to enhance measurement accuracy, providing a framework to optimise water isotope analysis.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barrett, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
EGUsphere, https://doi.org/10.5194/egusphere-2024-3789, https://doi.org/10.5194/egusphere-2024-3789, 2024
Short summary
Short summary
Fairbanks is among the most polluted cities with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the sub-micron PM elucidated residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulphur-containing organic aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites with wide-ranging influences.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
V. Holly L. Winton, Robert Mulvaney, Joel Savarino, Kyle R. Clem, and Markus M. Frey
Clim. Past, 20, 1213–1232, https://doi.org/10.5194/cp-20-1213-2024, https://doi.org/10.5194/cp-20-1213-2024, 2024
Short summary
Short summary
In 2018, a new 120 m ice core was drilled in a region located under the Antarctic ozone hole. We present the first results including a 1300-year record of snow accumulation and aerosol chemistry. We investigate the aerosol and moisture source regions and atmospheric processes related to the ice core record and discuss what this means for developing a record of past ultraviolet radiation and ozone depletion using the stable isotopic composition of nitrate measured in the same ice core.
Zhuang Jiang, Becky Alexander, Joel Savarino, and Lei Geng
Atmos. Chem. Phys., 24, 4895–4914, https://doi.org/10.5194/acp-24-4895-2024, https://doi.org/10.5194/acp-24-4895-2024, 2024
Short summary
Short summary
Ice-core nitrate could track the past atmospheric NOx and oxidant level, but its interpretation is hampered by the post-depositional processing. In this work, an inverse model was developed and tested against two polar sites and was shown to well reproduce the observed nitrate signals in snow and atmosphere, suggesting that the model can properly correct for the effect of post-depositional processing. This model offers a very useful tool for future studies on ice-core nitrate records.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022, https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Short summary
Nitrate isotopes in Antarctic ice do not preserve the seasonal isotopic cycles of the atmosphere, which limits their use to study the past. We studied nitrate along an 850 km Antarctic transect to learn how these cycles are changed by sunlight-driven chemistry in the snow. Our findings suggest that the snow accumulation rate and other environmental signals can be extracted from nitrate with the right sampling and analytical approaches.
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Albane Barbero, Roberto Grilli, Markus M. Frey, Camille Blouzon, Detlev Helmig, Nicolas Caillon, and Joël Savarino
Atmos. Chem. Phys., 22, 12025–12054, https://doi.org/10.5194/acp-22-12025-2022, https://doi.org/10.5194/acp-22-12025-2022, 2022
Short summary
Short summary
The high reactivity of the summer Antarctic boundary layer results in part from the emissions of nitrogen oxides produced during photo-denitrification of the snowpack, but its underlying mechanisms are not yet fully understood. The results of this study suggest that more NO2 is produced from the snowpack early in the photolytic season, possibly due to stronger UV irradiance caused by a smaller solar zenith angle near the solstice.
Zhuang Jiang, Joel Savarino, Becky Alexander, Joseph Erbland, Jean-Luc Jaffrezo, and Lei Geng
The Cryosphere, 16, 2709–2724, https://doi.org/10.5194/tc-16-2709-2022, https://doi.org/10.5194/tc-16-2709-2022, 2022
Short summary
Short summary
A record of year-round atmospheric nitrate isotopic composition along with snow nitrate isotopic data from Summit, Greenland, revealed apparent enrichments in nitrogen isotopes in snow nitrate compared to atmospheric nitrate, in addition to a relatively smaller degree of changes in oxygen isotopes. The results suggest that at this site post-depositional processing takes effect, which should be taken into account when interpreting ice-core nitrate isotope records.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Laura Crick, Andrea Burke, William Hutchison, Mika Kohno, Kathryn A. Moore, Joel Savarino, Emily A. Doyle, Sue Mahony, Sepp Kipfstuhl, James W. B. Rae, Robert C. J. Steele, R. Stephen J. Sparks, and Eric W. Wolff
Clim. Past, 17, 2119–2137, https://doi.org/10.5194/cp-17-2119-2021, https://doi.org/10.5194/cp-17-2119-2021, 2021
Short summary
Short summary
The ~ 74 ka eruption of Toba was one of the largest eruptions of the last 100 ka. We have measured the sulfur isotopic composition for 11 Toba eruption candidates in two Antarctic ice cores. Sulfur isotopes allow us to distinguish between large eruptions that have erupted material into the stratosphere and smaller ones that reach lower altitudes. Using this we have identified the events most likely to be Toba and place the eruption on the transition into a cold period in the Northern Hemisphere.
Zhuang Jiang, Becky Alexander, Joel Savarino, Joseph Erbland, and Lei Geng
The Cryosphere, 15, 4207–4220, https://doi.org/10.5194/tc-15-4207-2021, https://doi.org/10.5194/tc-15-4207-2021, 2021
Short summary
Short summary
We used a snow photochemistry model (TRANSITS) to simulate the seasonal nitrate snow profile at Summit, Greenland. Comparisons between model outputs and observations suggest that at Summit post-depositional processing is active and probably dominates the snowpack δ15N seasonality. We also used the model to assess the degree of snow nitrate loss and the consequences in its isotopes at present and in the past, which helps for quantitative interpretations of ice-core nitrate records.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, and Nicolas Caillon
Atmos. Chem. Phys., 21, 10477–10497, https://doi.org/10.5194/acp-21-10477-2021, https://doi.org/10.5194/acp-21-10477-2021, 2021
Short summary
Short summary
We report an efficient method to collect atmospheric NO2 adapted for multi-isotopic analysis and present the first NO2 triple oxygen and double nitrogen isotope measurements. Atmospheric samplings carried out in Grenoble, France, highlight the NO2 isotopic signature sensitivity to the local NOx emissions and chemical regimes. These preliminary results are very promising for using the combination of Δ17O and δ15N of NO2 as a probe of the atmospheric NOx emissions and chemistry.
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021, https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary
Short summary
Information about the past climate variability in tropical South America is stored in the snow layers of the tropical Andean glaciers. Here we show evidence that the presence of very large aeolian mineral dust particles at Nevado Illimani (Bolivia) is strictly controlled by the occurrence of summer storms in the Bolivian Altiplano. Therefore, based on the snow dust content and its composition of stable water isotopes, we propose a new proxy for information on previous summer storms.
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955, https://doi.org/10.5194/acp-20-13929-2020, https://doi.org/10.5194/acp-20-13929-2020, 2020
Short summary
Short summary
Water vapor isotopes recorded for 2 years in coastal northern Greenland largely reflect changes in sea ice cover, with distinct values when Baffin Bay is ice covered in winter vs. open in summer. Resulting changes in moisture transport, surface winds, and air temperature also modify the isotopes. Local glacial ice may thus preserve past changes in the Baffin Bay sea ice extent, and this will help us better understand how the Arctic environment and water cycle responds to global climate change.
Ben G. Kopec, Pete D. Akers, Eric S. Klein, and Jeffery M. Welker
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-276, https://doi.org/10.5194/tc-2020-276, 2020
Manuscript not accepted for further review
Short summary
Short summary
Significant mass loss to the Greenland Ice Sheet has occurred over recent decades, marked by a record summer melt season in 2019. Water vapor fluxes from the ice sheet surface, including sublimation and meltwater evaporation, are a growing component of the mass balance. Using water vapor isotope measurements in northwest Greenland, we identify the signal of these fluxes and show how they correspond with melt extent. These vapor fluxes contribute ~20 % of water vapor advected off the ice sheet.
Filipe Gaudie Ley Lindau, Jefferson Cardia Simões, Rafael da Rocha Ribeiro, Patrick Ginot, Barbara Delmonte, Giovanni Baccolo, Stanislav Kutuzov, Valter Maggi, and Edson Ramirez
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-129, https://doi.org/10.5194/cp-2020-129, 2020
Manuscript not accepted for further review
Short summary
Short summary
Glaciers are important freshwater sources in the Tropical Andes. Their retreat has been accelerating since the 1980s. This exposes fresh glacial sediments and facilitates the transport of coarse dust particles to the Nevado Illimani summit. Both the glacial area of Illimani and its ice core record of coarse dust particles respond to warmer conditions across the southern tropical Andes, and drier conditions over the Amazon basin.
Cited articles
Bigler, M., Svensson, A., Kettner, E., Vallelonga, P., Nielsen, M. E., and
Steffensen, J. P.: Optimization of High-Resolution Continuous Flow Analysis
for Transient Climate Signals in Ice Cores, Environ. Sci. Technol., 45,
4483–4489, https://doi.org/10.1021/es200118j, 2011.
Burke, I. C., O'Deen, L. A., Mosier, A. R., and Porter, L. K.: Diffusion of
Soil Extracts for Nitrogen and Nitrogen-15 Analyses by Automated
Combustion/Mass Spectrometry, Soil Sci. Soc. Am. J., 54,
1190–1192, https://doi.org/10.2136/sssaj1990.03615995005400040047x, 1990.
Chang, Y., Liu, X., Deng, C., Dore, A. J., and Zhuang, G.: Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures, Atmos. Chem. Phys., 16, 11635–11647, https://doi.org/10.5194/acp-16-11635-2016, 2016.
Chang, Y., Zou, Z., Zhang, Y., Deng, C., Hu, J., Shi, Z., Dore, A. J., and
Collett, J. L.: Assessing Contributions of Agricultural and Nonagricultural
Emissions to Atmospheric Ammonia in a Chinese Megacity, Environ.
Sci. Technol., 53, 1822–1833,
https://doi.org/10.1021/acs.est.8b05984, 2019.
Erbland, J., Vicars, W. C., Savarino, J., Morin, S., Frey, M. M., Frosini, D., Vince, E., and Martins, J. M. F.: Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer, Atmos. Chem. Phys., 13, 6403–6419, https://doi.org/10.5194/acp-13-6403-2013, 2013.
Erisman, J. W.: How ammonia feeds and pollutes the world, Science, 374,
685–686, https://doi.org/10.1126/science.abm3492, 2021.
European Council: Directive (EU) 2016/2284 of the European Parliament and of
the Council of 14 December 2016 on the reduction of national emissions of
certain atmospheric pollutants, amending Directive 2003/35/EC and repealing
Directive 2001/81/EC (Text with EEA relevance), OJ L, 344, 1–31, http://data.europa.eu/eli/dir/2016/2284/oj (last access: 31 August 2023), 2016.
European Environment Agency: European Union emission inventory report
1990–2019 under the UNECE Convention on Long-range Transboundary Air
Pollution (Air Convention), 1–158, https://www.eea.europa.eu//publications/lrtap-1990-2019 (last access: 8 August 2023), 2021.
Favez, O., Weber, S., Petit, J.-E., Alleman, L. Y., Albinet, A., Riffault,
V., Chazeau, B., Amodeo, T., Salameh, D., Zhang, Y., Srivastava, D.,
Samaké, A., Aujay-Plouzeau, R., Papin, A., Bonnaire, N., Boullanger, C.,
Chatain, M., Chevrier, F., Detournay, A., Dominik-Sègue, M., Falhun, R.,
Garbin, C., Ghersi, V., Grignion, G., Levigoureux, G., Pontet, S.,
Rangognio, J., Zhang, S., Besombes, J.-L., Conil, S., Uzu, G., Savarino, J.,
Marchand, N., Gros, V., Marchand, C., Jaffrezo, J.-L., and Leoz-Garziandia,
E.: Overview of the French Operational Network for In Situ Observation of PM
Chemical Composition and Sources in Urban Environments (CARA Program),
Atmosphere, 12, 207, https://doi.org/10.3390/atmos12020207, 2021.
Felix, J. D., Elliott, E. M., and Gay, D. A.: Spatial and temporal patterns
of nitrogen isotopic composition of ammonia at U.S. ammonia monitoring
network sites, Atmos. Environ., 150, 434–442,
https://doi.org/10.1016/j.atmosenv.2016.11.039, 2017.
Fortems-Cheiney, A., Dufour, G., Hamaoui-Laguel, L., Foret, G., Siour, G.,
Van Damme, M., Meleux, F., Coheur, P.-F., Clerbaux, C., Clarisse, L., Favez,
O., Wallasch, M., and Beekmann, M.: Unaccounted variability in NH3
agricultural sources detected by IASI contributing to European spring haze
episode, Geophys. Res. Lett., 43, 5475–5482,
https://doi.org/10.1002/2016GL069361, 2016.
Fortems-Cheiney, A., Dufour, G., Foret, G., Siour, G., Van Damme, M.,
Coheur, P.-F., Clarisse, L., Clerbaux, C., and Beekmann, M.: Understanding
the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with
CHIMERE and Comparison with IASI Observations, Atmosphere, 13, 1101,
https://doi.org/10.3390/atmos13071101, 2022.
Frey, M. M., Savarino, J., Morin, S., Erbland, J., and Martins, J. M. F.: Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling, Atmos. Chem. Phys., 9, 8681–8696, https://doi.org/10.5194/acp-9-8681-2009, 2009.
Gautier, E., Savarino, J., Hoek, J., Erbland, J., Caillon, N., Hattori, S.,
Yoshida, N., Albalat, E., Albarede, F., and Farquhar, J.: 2600-years of
stratospheric volcanism through sulfate isotopes, Nat. Commun., 10,
466, https://doi.org/10.1038/s41467-019-08357-0, 2019.
Genfa, Z. and Dasgupta, P. K.: Fluorometric measurement of aqueous ammonium
ion in a flow injection system, ACS Publications, 61, 408–412,
https://doi.org/10.1021/ac00180a006, 1989.
Gu, B., Zhang, L., Van Dingenen, R., Vieno, M., Van Grinsven, H. J., Zhang,
X., Zhang, S., Chen, Y., Wang, S., Ren, C., Rao, S., Holland, M.,
Winiwarter, W., Chen, D., Xu, J., and Sutton, M. A.: Abating ammonia is more
cost-effective than nitrogen oxides for mitigating PM2.5 air pollution,
Science, 374, 758–762, https://doi.org/10.1126/science.abf8623, 2021.
Guilhermet, J., Preunkert, S., Voisin, D., Baduel, C., and Legrand, M.:
Major 20th century changes of water-soluble humic-like substances (HULIS WS) aerosol over Europe inferred from Alpine ice cores, J. Geophys.
Res.-Atmos., 118, 3869–3878,
https://doi.org/10.1002/jgrd.50201, 2013.
Kaiser, J., Hastings, M. G., Houlton, B. Z., Röckmann, T., and Sigman,
D. M.: Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier
Method and Thermal Decomposition of N2O, Anal. Chem., 79, 599–607,
https://doi.org/10.1021/ac061022s, 2007.
Kaufmann, P. R., Federer, U., Hutterli, M. A., Bigler, M., Schüpbach,
S., Ruth, U., Schmitt, J., and Stocker, T. F.: An Improved Continuous Flow
Analysis System for High-Resolution Field Measurements on Ice Cores,
Environ. Sci. Technol., 42, 8044–8050,
https://doi.org/10.1021/es8007722, 2008.
Kawashima, H., Yoshida, O., and Suto, N.: Ion-exchange resin and
denitrification pretreatment for determining δ15N-NH4+, δ15N-NO3, and δ18O-NO3 values, Rapid Commun. Mass
Sp., 35, e9027, https://doi.org/10.1002/rcm.9027, 2021.
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger,
A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer,
D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J.,
Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D.,
Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo,
K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J.,
Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P.,
Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M.,
Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y.,
Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler,
P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.:
Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
aerosol nucleation, Nature, 476, 429–433,
https://doi.org/10.1038/nature10343, 2011.
Kürten, A.: New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions, Atmos. Chem. Phys., 19, 5033–5050, https://doi.org/10.5194/acp-19-5033-2019, 2019.
Lamothe, A., Savarino, J., Ginot, P., Soussaintjean, L., Gautier, E., Akers,
P. D., Caillon, N., and Erbland, J.: NH4_method_in_low_concentrated_ environment-size_correction_and_calibration_scripts, Zenodo [code], https://doi.org/10.5281/zenodo.7728983, 2023.
Legrand, M. and Mayewski, P.: Glaciochemistry of polar ice cores: A review,
Rev. Geophys., 35, 219–243, https://doi.org/10.1029/96RG03527,
1997.
Legrand, M., McConnell, J. R., Preunkert, S., Chellman, N. J., and Arienzo,
M. M.: Causes of enhanced bromine levels in Alpine ice cores during the 20th
century: Implications for bromine in the free European troposphere, J. Geophys. Res.-Atmos., 126, e2020JD034246, https://doi.org/10.1029/2020JD034246, 2021.
Lehmann, M. F., Bernasconi, S. M., and McKenzie, J. A.: A Method for the
Extraction of Ammonium from Freshwaters for Nitrogen Isotope Analysis, Anal.
Chem., 73, 4717–4721, https://doi.org/10.1021/ac010212u, 2001.
Lehtipalo, K., Rondo, L., Kontkanen, J., Schobesberger, S., Jokinen, T.,
Sarnela, N., Kürten, A., Ehrhart, S., Franchin, A., Nieminen, T.,
Riccobono, F., Sipilä, M., Yli-Juuti, T., Duplissy, J., Adamov, A.,
Ahlm, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., Dommen,
J., Downard, A. J., Dunne, E. M., Flagan, R. C., Guida, R., Hakala, J.,
Hansel, A., Jud, W., Kangasluoma, J., Kerminen, V.-M., Keskinen, H., Kim,
J., Kirkby, J., Kupc, A., Kupiainen-Määttä, O., Laaksonen, A.,
Lawler, M. J., Leiminger, M., Mathot, S., Olenius, T., Ortega, I. K.,
Onnela, A., Petäjä, T., Praplan, A., Rissanen, M. P., Ruuskanen, T.,
Santos, F. D., Schallhart, S., Schnitzhofer, R., Simon, M., Smith, J. N.,
Tröstl, J., Tsagkogeorgas, G., Tomé, A., Vaattovaara, P.,
Vehkamäki, H., Vrtala, A. E., Wagner, P. E., Williamson, C., Wimmer, D.,
Winkler, P. M., Virtanen, A., Donahue, N. M., Carslaw, K. S., Baltensperger,
U., Riipinen, I., Curtius, J., Worsnop, D. R., and Kulmala, M.: The effect
of acid–base clustering and ions on the growth of atmospheric
nano-particles, Nat. Commun., 7, 11594, https://doi.org/10.1038/ncomms11594,
2016.
Lelieveld, J. and Pöschl, U.: Chemists can help to solve the
air-pollution health crisis, Nature, 551, 291–293,
https://doi.org/10.1038/d41586-017-05906-9, 2017.
Li, L., Lollar, B. S., Li, H., Wortmann, U. G., and Lacrampe-Couloume, G.:
Ammonium stability and nitrogen isotope fractionations for
NH4+–NH3(aq)–NH3(gas) systems at 20–70 ∘C and pH of 2–13:
Applications to habitability and nitrogen cycling in low-temperature
hydrothermal systems, Geochim. Cosmochim. Acta, 84, 280–296,
https://doi.org/10.1016/j.gca.2012.01.040, 2012.
Liu, D., Fang, Y., Tu, Y., and Pan, Y.: Chemical method for nitrogen
isotopic analysis of ammonium at natural abundance, Anal. Chem.,
86, 3787–3792, 2014.
Mariappan, S., Exner, M. E., Martin, G. E., and Spalding, R. F.: Variability
of Anaerobic Animal Waste Lagoon delta15N Source Signatures,
Environ. Forensics, 10, 18–25, https://doi.org/10.1080/15275920802502075, 2009.
Maupetit, F. and Delmas, R. J.: Snow chemistry of high altitude glaciers in
the French Alps, Tellus B, 46, 304–324,
https://doi.org/10.3402/tellusb.v46i4.15806, 1994.
Maupetit, F., Wagenbach, D., Weddeling, P., and Delmas, R. J.: Seasonal
fluxes of major ions to a high altitude cold alpine glacier, Atmos.
Environ., 29, 1–9, https://doi.org/10.1016/1352-2310(94)00222-7, 1995.
McIlvin, M. R. and Altabet, M. A.: Chemical Conversion of Nitrate and
Nitrite to Nitrous Oxide for Nitrogen and Oxygen Isotopic Analysis in
Freshwater and Seawater, Anal. Chem., 77, 5589–5595,
https://doi.org/10.1021/ac050528s, 2005.
O'Deen, W. A. and Porter, L. K.: Devarda's alloy reduction of nitrate and
tube diffusion of the reduced nitrogen for indophenol ammonium and
nitrogen-15 determinations, Anal. Chem., 52, 1164–1166,
https://doi.org/10.1021/ac50057a044, 1980.
PANDA: https://panda.osug.fr/, last access: 31 August 2023.
Perrino, C., Marconi, E., Tofful, L., Farao, C., Materazzi, S., and
Canepari, S.: Thermal stability of inorganic and organic compounds in
atmospheric particulate matter, Atmos. Environ., 54, 36–43,
https://doi.org/10.1016/j.atmosenv.2012.02.078, 2012.
Preston, T., Bury, S., Présing, M., Moncoiffe, G., and Slater, C.:
Isotope Dilution Analysis of Combined Nitrogen in Natural Waters: I.
Ammonium, Rapid Commun. Mass Sp., 10, 958–964, 1996.
Preunkert, S., Wagenbach, D., Legrand, M., and Vincent, C.: Col du Dôme
(Mt Blanc Massif, French Alps) suitability for ice-core studies in relation
with past atmospheric chemistry over Europe, Tellus B, 52, 993–1012, https://doi.org/10.3402/tellusb.v52i3.17081,
2000.
Preunkert, S., Legrand, M., and Wagenbach, D.: Sulfate trends in a Col du
Dôme (French Alps) ice core: A record of anthropogenic sulfate levels in
the European midtroposphere over the twentieth century, J.
Geophys. Res.-Atmos., 106, 31991–32004,
https://doi.org/10.1029/2001JD000792, 2001.
Preunkert, S., Wagenbach, D., and Legrand, M.: A seasonally resolved alpine
ice core record of nitrate: Comparison with anthropogenic inventories and
estimation of preindustrial emissions of NO in Europe, J.
Geophys. Res.-Atmos., 108, 4681,
https://doi.org/10.1029/2003JD003475, 2003.
Preunkert, S., McConnell, J. R., Hoffmann, H., Legrand, M., Wilson, A. I.,
Eckhardt, S., Stohl, A., Chellman, N. J., Arienzo, M. M., and Friedrich, R.:
Lead and Antimony in Basal Ice From Col du Dome (French Alps) Dated With
Radiocarbon: A Record of Pollution During Antiquity, Geophys. Res.
Lett., 46, 4953–4961, https://doi.org/10.1029/2019GL082641, 2019.
Reche, C., Viana, M., Karanasiou, A., Cusack, M., Alastuey, A.,
Artiñano, B., Revuelta, M. A., López-Mahía, P., Blanco-Heras,
G., Rodríguez, S., Sánchez de la Campa, A. M.,
Fernández-Camacho, R., González-Castanedo, Y., Mantilla, E., Tang,
Y. S., and Querol, X.: Urban NH3 levels and sources in six major Spanish
cities, Chemosphere, 119, 769–777,
https://doi.org/10.1016/j.chemosphere.2014.07.097, 2015.
Röthlisberger, R., Bigler, M., Hutterli, M., Sommer, S., Stauffer, B.,
Junghans, H. G., and Wagenbach, D.: Technique for Continuous High-Resolution
Analysis of Trace Substances in Firn and Ice Cores, Environ. Sci. Technol.,
34, 338–342, https://doi.org/10.1021/es9907055, 2000.
Rubino, M., D'Onofrio, A., Seki, O., and Bendle, J. A.: Ice-core records of
biomass burning, The Anthropocene Review, 3, 140–162,
https://doi.org/10.1177/2053019615605117, 2016.
Savard, M. M., Cole, A., Smirnoff, A., and Vet, R.: δ15N values of
atmospheric N species simultaneously collected using sector-based samplers
distant from sources – Isotopic inheritance and fractionation, Atmos.
Environ., 162, 11–22, https://doi.org/10.1016/j.atmosenv.2017.05.010, 2017.
Sigg, A., Fuhrer, K., Anklin, M., Staffelbach, T., and Zurmuehle, D.: A
continuous analysis technique for trace species in ice cores, Environ.
Sci. Technol., 28, 204–209, https://doi.org/10.1021/es00051a004,
1994.
Silva, S. R., Kendall, C., Wilkison, D. H., Ziegler, A. C., Chang, C. C. Y.,
and Avanzino, R. J.: A new method for collection of nitrate from fresh water
and the analysis of nitrogen and oxygen isotope ratios, J.
Hydrol., 228, 22–36, https://doi.org/10.1016/S0022-1694(99)00205-X, 2000.
Sprinson, D. B. and Rittenberg, D. J.: The rate of utilization of ammonia for protein synthesis, Biol. Chem., 180, 707–714, 1949.
Stolzenburg, D., Simon, M., Ranjithkumar, A., Kürten, A., Lehtipalo, K., Gordon, H., Ehrhart, S., Finkenzeller, H., Pichelstorfer, L., Nieminen, T., He, X.-C., Brilke, S., Xiao, M., Amorim, A., Baalbaki, R., Baccarini, A., Beck, L., Bräkling, S., Caudillo Murillo, L., Chen, D., Chu, B., Dada, L., Dias, A., Dommen, J., Duplissy, J., El Haddad, I., Fischer, L., Gonzalez Carracedo, L., Heinritzi, M., Kim, C., Koenig, T. K., Kong, W., Lamkaddam, H., Lee, C. P., Leiminger, M., Li, Z., Makhmutov, V., Manninen, H. E., Marie, G., Marten, R., Müller, T., Nie, W., Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Rissanen, M. P., Rörup, B., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y., Tauber, C., Tham, Y. J., Tomé, A., Vazquez-Pufleau, M., Wagner, A. C., Wang, M., Wang, Y., Weber, S. K., Wimmer, D., Wlasits, P. J., Wu, Y., Ye, Q., Zauner-Wieczorek, M., Baltensperger, U., Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R. C., Hansel, A., Kulmala, M., Lelieveld, J., Volkamer, R., Kirkby, J., and Winkler, P. M.: Enhanced growth rate of atmospheric particles from sulfuric acid, Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, 2020.
Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E.,
Theobald, M. R., Tang, Y. S., Braban, C. F., Vieno, M., Dore, A. J.,
Mitchell, R. F., Wanless, S., Daunt, F., Fowler, D., Blackall, T. D.,
Milford, C., Flechard, C. R., Loubet, B., Massad, R., Cellier, P., Personne,
E., Coheur, P. F., Clarisse, L., Van Damme, M., Ngadi, Y., Clerbaux, C.,
Skjøth, C. A., Geels, C., Hertel, O., Wichink Kruit, R. J., Pinder, R.
W., Bash, J. O., Walker, J. T., Simpson, D., Horváth, L., Misselbrook,
T. H., Bleeker, A., Dentener, F., and de Vries, W.: Towards a
climate-dependent paradigm of ammonia emission and deposition,
Philos. T. R. Soc. B, 368, 20130166,
https://doi.org/10.1098/rstb.2013.0166, 2013.
Szopa, S., Naik, V., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D.,
Fuzzi, S., Gallardo, L., Kiendler-Scharr, A., Klimont, Z., Liao, H., Unger,
N., and Zanis, P.: Short-Lived Climate Forcers, edited by: Masson-Delmotte,
V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud,
N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy,
E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu,
R., and Zhou, B., Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, 817–922,
https://doi.org/10.1017/9781009157896.008, 2021.
Thomas, E. R., Allen, C. S., Etourneau, J., King, A. C. F., Severi, M.,
Winton, V. H. L., Mueller, J., Crosta, X., and Peck, V. L.: Antarctic Sea
Ice Proxies from Marine and Ice Core Archives Suitable for Reconstructing
Sea Ice over the Past 2000 Years, Geosciences, 9, 506,
https://doi.org/10.3390/geosciences9120506, 2019.
Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D.,
Clerbaux, C., and Coheur, P.-F.: Industrial and agricultural ammonia point
sources exposed, Nature, 564, 99–103,
https://doi.org/10.1038/s41586-018-0747-1, 2018.
Velthof, G., Barot, S., Bloem, J., Butterbach-Bahl, K., de Vries, W., Kros,
J., Lavelle, P., Olesen, J. E., and Oenema, O.: Nitrogen as a threat to
European soil quality, in: The European Nitrogen Assessment: Sources,
Effects and Policy Perspectives, edited by: Sutton, M. A., Howard, C. M.,
Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H.,
and Grizzetti, B., Cambridge University Press, Cambridge, 495–510,
https://doi.org/10.1017/CBO9780511976988.024, 2011.
Walters, W. W., Chai, J., and Hastings, M. G.: Theoretical Phase Resolved
Ammonia–Ammonium Nitrogen Equilibrium Isotope Exchange Fractionations:
Applications for Tracking Atmospheric Ammonia Gas-to-Particle Conversion,
ACS Earth and Space Chemistry, 3, 79–89,
https://doi.org/10.1021/acsearthspacechem.8b00140, 2019.
Walters, W. W., Song, L., Chai, J., Fang, Y., Colombi, N., and Hastings, M. G.: Characterizing the spatiotemporal nitrogen stable isotopic composition of ammonia in vehicle plumes, Atmos. Chem. Phys., 20, 11551–11567, https://doi.org/10.5194/acp-20-11551-2020, 2020.
Wang, M., Xiao, M., Bertozzi, B., Marie, G., Rörup, B., Schulze, B.,
Bardakov, R., He, X.-C., Shen, J., Scholz, W., Marten, R., Dada, L.,
Baalbaki, R., Lopez, B., Lamkaddam, H., Manninen, H. E., Amorim, A., Ataei,
F., Bogert, P., Brasseur, Z., Caudillo, L., De Menezes, L.-P., Duplissy, J.,
Ekman, A. M. L., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, R.,
Heinritzi, M., Hofbauer, V., Höhler, K., Korhonen, K., Krechmer, J. E.,
Kürten, A., Lehtipalo, K., Mahfouz, N. G. A., Makhmutov, V.,
Massabò, D., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T.,
Onnela, A., Petäjä, T., Philippov, M., Piedehierro, A. A., Pozzer,
A., Ranjithkumar, A., Schervish, M., Schobesberger, S., Simon, M., Stozhkov,
Y., Tomé, A., Umo, N. S., Vogel, F., Wagner, R., Wang, D. S., Weber, S.
K., Welti, A., Wu, Y., Zauner-Wieczorek, M., Sipilä, M., Winkler, P. M.,
Hansel, A., Baltensperger, U., Kulmala, M., Flagan, R. C., Curtius, J.,
Riipinen, I., Gordon, H., Lelieveld, J., El-Haddad, I., Volkamer, R.,
Worsnop, D. R., Christoudias, T., Kirkby, J., Möhler, O., and Donahue,
N. M.: Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation,
Nature, 605, 483–489, https://doi.org/10.1038/s41586-022-04605-4, 2022.
Xiang, Y.-K., Dao, X., Gao, M., Lin, Y.-C., Cao, F., Yang, X.-Y., and Zhang,
Y.-L.: Nitrogen isotope characteristics and source apportionment of
atmospheric ammonium in urban cities during a haze event in Northern China
Plain, Atmos. Environ., 269, 118800, https://doi.org/10.1016/j.atmosenv.2021.118800, 2022.
Zhan, X., Adalibieke, W., Cui, X., Winiwarter, W., Reis, S., Zhang, L., Bai,
Z., Wang, Q., Huang, W., and Zhou, F.: Improved Estimates of Ammonia
Emissions from Global Croplands, Environ. Sci. Technol., 55, 1329–1338,
https://doi.org/10.1021/acs.est.0c05149, 2021.
Zhang, L., Altabet, M. A., Wu, T., and Hadas, O.: Sensitive Measurement of
NH N N (δ15NH ) at Natural Abundance Levels in Fresh and Saltwaters, Anal. Chem., 79, 5297–5303, https://doi.org/10.1021/ac070106d, 2007.
Short summary
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its emissions and how it reacts is a hot topic that can be addressed from the past. Stable isotopes (the mass of the molecule) measured in ice cores (glacial archives) can teach us a lot. However, the concentrations in ice cores are very small. We propose a protocol to limit the contamination and apply it to one ice core drilled in Mont Blanc, describing the opportunities our method brings.
Ammonia is a reactive gas in our atmosphere that is key in air quality issues. Assessing its...