Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4803-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-4803-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric H2 observations from the NOAA Cooperative Global Air Sampling Network
Gabrielle Pétron
CORRESPONDING AUTHOR
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Andrew M. Crotwell
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
John Mund
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Molly Crotwell
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Thomas Mefford
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Kirk Thoning
NOAA Global Monitoring Laboratory, Boulder, USA
Bradley Hall
NOAA Global Monitoring Laboratory, Boulder, USA
Duane Kitzis
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Monica Madronich
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Eric Moglia
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Donald Neff
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Sonja Wolter
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, USA
NOAA Global Monitoring Laboratory, Boulder, USA
Armin Jordan
Max Planck Institute for Biogeochemistry (MPI-BGC), Jena, Germany
Paul Krummel
Commonwealth Scientific and Industrial Research Organisation – Environment, Aspendale, Australia
Ray Langenfelds
Commonwealth Scientific and Industrial Research Organisation – Environment, Aspendale, Australia
John Patterson
Department of Earth System Science, University of California, Irvine, USA
Related authors
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
John D. Patterson, Murat Aydin, Andrew M. Crotwell, Gabrielle Pétron, Jeffery P. Severinghaus, Paul B. Krummel, Ray L. Langenfelds, Vasilii V. Petrenko, and Eric S. Saltzman
Clim. Past, 19, 2535–2550, https://doi.org/10.5194/cp-19-2535-2023, https://doi.org/10.5194/cp-19-2535-2023, 2023
Short summary
Short summary
Atmospheric levels of molecular hydrogen (H2) can impact climate and air quality. Constraining past changes to atmospheric H2 is useful for understanding how H2 cycles through the Earth system and predicting the impacts of increasing anthropogenic emissions under the
hydrogen economy. Here, we use the aging air found in the polar snowpack to reconstruct H2 levels over the past 100 years. We find that H2 levels increased by 30 % over Greenland and 60 % over Antarctica during the 20th century.
Stijn Naus, Lucas G. Domingues, Maarten Krol, Ingrid T. Luijkx, Luciana V. Gatti, John B. Miller, Emanuel Gloor, Sourish Basu, Caio Correia, Gerbrand Koren, Helen M. Worden, Johannes Flemming, Gabrielle Pétron, and Wouter Peters
Atmos. Chem. Phys., 22, 14735–14750, https://doi.org/10.5194/acp-22-14735-2022, https://doi.org/10.5194/acp-22-14735-2022, 2022
Short summary
Short summary
We assimilate MOPITT CO satellite data in the TM5-4D-Var inverse modelling framework to estimate Amazon fire CO emissions for 2003–2018. We show that fire emissions have decreased over the analysis period, coincident with a decrease in deforestation rates. However, interannual variations in fire emissions are large, and they correlate strongly with soil moisture. Our results reveal an important role for robust, top-down fire CO emissions in quantifying and attributing Amazon fire intensity.
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021, https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Short summary
After a multidecadal global decline in atmospheric abundance of ethane and propane (precursors of tropospheric ozone and aerosols), previous work showed a reversal of this trend in 2009–2015 in the Northern Hemisphere due to the growth in oil and natural gas production in North America. Here we show a temporary pause in the growth of atmospheric ethane and propane in 2015–2018 and highlight the critical need for additional top-down studies to further constrain ethane and propane emissions.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Stephen Conley, Ian Faloona, Shobhit Mehrotra, Maxime Suard, Donald H. Lenschow, Colm Sweeney, Scott Herndon, Stefan Schwietzke, Gabrielle Pétron, Justin Pifer, Eric A. Kort, and Russell Schnell
Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017, https://doi.org/10.5194/amt-10-3345-2017, 2017
Short summary
Short summary
This paper describes a new method of quantifying surface trace gas emissions (e.g. methane) from small aircraft (e.g. Mooney, Cessna) in about 30 min. This technique greatly enhances our ability to rapidly respond in the event of catastrophic failures such as Aliso Canyon and Deep Water Horizon.
B. W. LaFranchi, G. Pétron, J. B. Miller, S. J. Lehman, A. E. Andrews, E. J. Dlugokencky, B. Hall, B. R. Miller, S. A. Montzka, W. Neff, P. C. Novelli, C. Sweeney, J. C. Turnbull, D. E. Wolfe, P. P. Tans, K. R. Gurney, and T. P. Guilderson
Atmos. Chem. Phys., 13, 11101–11120, https://doi.org/10.5194/acp-13-11101-2013, https://doi.org/10.5194/acp-13-11101-2013, 2013
V. V. Petrenko, P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White
Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, https://doi.org/10.5194/acp-13-7567-2013, 2013
Ann-Kristin Kunz, Lars Borchardt, Andreas Christen, Julian Della Coletta, Markus Eritt, Xochilt Gutiérrez, Josh Hashemi, Rainer Hilland, Armin Jordan, Richard Kneißl, Virgile Legendre, Ingeborg Levin, Susanne Preunkert, Pascal Rubli, Stavros Stagakis, and Samuel Hammer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3175, https://doi.org/10.5194/egusphere-2024-3175, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We present, to our knowledge, the first relaxed eddy accumulation system explicitly tailored to a radiocarbon (14C)-based partitioning of fossil and non-fossil urban CO2 fluxes. Laboratory tests and in-depth quality and performance checks prove that the system meets the technical requirements. A pilot application on a tall-tower in the city of Zurich, Switzerland, demonstrates the ability to separate fossil and non-fossil CO2 fluxes within the typical precision of 14C measurements.
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3769, https://doi.org/10.5194/egusphere-2024-3769, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from coastal upwelling systems of Peru and Chile.
Murat Aydin, Melinda R. Nicewonger, Gregory L. Britten, Dominic Winski, Mary Whelan, John D. Patterson, Erich Osterberg, Christopher F. Lee, Tara Harder, Kyle J. Callahan, David Ferris, and Eric S. Saltzman
Clim. Past, 20, 1885–1917, https://doi.org/10.5194/cp-20-1885-2024, https://doi.org/10.5194/cp-20-1885-2024, 2024
Short summary
Short summary
We present a new ice core carbonyl sulfide (COS) record from the South Pole, Antarctica, yielding a 52 000-year atmospheric record after correction for production in the ice sheet. The results display a large increase in atmospheric COS concurrent with the last deglaciation. The deglacial COS rise results from an overall strengthening of atmospheric COS sources, implying a large increase in ocean sulfur gas emissions. Atmospheric sulfur gases have negative climate feedbacks.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
EGUsphere, https://doi.org/10.5194/egusphere-2024-2397, https://doi.org/10.5194/egusphere-2024-2397, 2024
Short summary
Short summary
Our research explores how weather patterns affect cloud-forming particles (CCN) over the Southern Ocean, crucial for more accurately simulate the Earth's climate. We discovered that winter and summer weather systems significantly influence CCN levels. By analysing air mass trajectories and precipitation, we identified a seasonal cycle in CCN driven by synoptic meteorology. This work enhances climate predictions by improving our understanding of cloud-aerosol interactions in this remote region.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter Raymond, Pierre Regnier, Joseph G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihito Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joel Thanwerdas, Hanquin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido van der Werf, Doug E. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-115, https://doi.org/10.5194/essd-2024-115, 2024
Preprint under review for ESSD
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesize and update the budget of the sources and sinks of CH4. This edition benefits from important progresses in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024, https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary
Short summary
The hydroxyl radical determines the atmospheric lifetimes of numerous species including methane. Since OH is very short-lived, it is not possible to directly measure its concentration on scales relevant for understanding its effect on other species. Here, OH is inferred by looking at changes in hydrofluorocarbons (HFCs). We find that OH levels have been fairly stable over our study period (2004 to 2021), suggesting that OH is not the main driver of the recent increase in atmospheric methane.
Christian Rödenbeck, Karina E. Adcock, Markus Eritt, Maksym Gachkivskyi, Christoph Gerbig, Samuel Hammer, Armin Jordan, Ralph F. Keeling, Ingeborg Levin, Fabian Maier, Andrew C. Manning, Heiko Moossen, Saqr Munassar, Penelope A. Pickers, Michael Rothe, Yasunori Tohjima, and Sönke Zaehle
Atmos. Chem. Phys., 23, 15767–15782, https://doi.org/10.5194/acp-23-15767-2023, https://doi.org/10.5194/acp-23-15767-2023, 2023
Short summary
Short summary
The carbon dioxide content of the Earth atmosphere is increasing due to human emissions from burning of fossil fuels, causing global climate change. The strength of the fossil-fuel emissions is estimated by inventories based on energy data, but independent validation of these inventories has been recommended by the Intergovernmental Panel on Climate Change. Here we investigate the potential to validate inventories based on measurements of small changes in the atmospheric oxygen content.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
John D. Patterson, Murat Aydin, Andrew M. Crotwell, Gabrielle Pétron, Jeffery P. Severinghaus, Paul B. Krummel, Ray L. Langenfelds, Vasilii V. Petrenko, and Eric S. Saltzman
Clim. Past, 19, 2535–2550, https://doi.org/10.5194/cp-19-2535-2023, https://doi.org/10.5194/cp-19-2535-2023, 2023
Short summary
Short summary
Atmospheric levels of molecular hydrogen (H2) can impact climate and air quality. Constraining past changes to atmospheric H2 is useful for understanding how H2 cycles through the Earth system and predicting the impacts of increasing anthropogenic emissions under the
hydrogen economy. Here, we use the aging air found in the polar snowpack to reconstruct H2 levels over the past 100 years. We find that H2 levels increased by 30 % over Greenland and 60 % over Antarctica during the 20th century.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Hyeri Park, Jooil Kim, Haklim Choi, Sohyeon Geum, Yeaseul Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Kieran M. Stanley, Simon O'Doherty, Paul J. Fraser, Peter G. Simmonds, Paul B. Krummel, Ray F. Weiss, Ronald G. Prinn, and Sunyoung Park
Atmos. Chem. Phys., 23, 9401–9411, https://doi.org/10.5194/acp-23-9401-2023, https://doi.org/10.5194/acp-23-9401-2023, 2023
Short summary
Short summary
Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008–2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.
Jianghanyang Li, Bianca C. Baier, Fred Moore, Tim Newberger, Sonja Wolter, Jack Higgs, Geoff Dutton, Eric Hintsa, Bradley Hall, and Colm Sweeney
Atmos. Meas. Tech., 16, 2851–2863, https://doi.org/10.5194/amt-16-2851-2023, https://doi.org/10.5194/amt-16-2851-2023, 2023
Short summary
Short summary
Monitoring a suite of trace gases in the stratosphere will help us better understand the stratospheric circulation and its impact on the earth's radiation balance. However, such measurements are rare and usually expensive. We developed an instrument that can measure stratospheric trace gases using a low-cost sampling platform (AirCore). The results showed expected agreement with aircraft measurements, demonstrating this technique provides a low-cost and robust way to observe the stratosphere.
Lei Hu, Deborah Ottinger, Stephanie Bogle, Stephen A. Montzka, Philip L. DeCola, Ed Dlugokencky, Arlyn Andrews, Kirk Thoning, Colm Sweeney, Geoff Dutton, Lauren Aepli, and Andrew Crotwell
Atmos. Chem. Phys., 23, 1437–1448, https://doi.org/10.5194/acp-23-1437-2023, https://doi.org/10.5194/acp-23-1437-2023, 2023
Short summary
Short summary
Effective mitigation of greenhouse gas (GHG) emissions relies on an accurate understanding of emissions. Here we demonstrate the added value of using inventory- and atmosphere-based approaches for estimating US emissions of SF6, the most potent GHG known. The results suggest a large decline in US SF6 emissions, shed light on the possible processes causing the differences between the independent estimates, and identify opportunities for substantial additional emission reductions.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Stijn Naus, Lucas G. Domingues, Maarten Krol, Ingrid T. Luijkx, Luciana V. Gatti, John B. Miller, Emanuel Gloor, Sourish Basu, Caio Correia, Gerbrand Koren, Helen M. Worden, Johannes Flemming, Gabrielle Pétron, and Wouter Peters
Atmos. Chem. Phys., 22, 14735–14750, https://doi.org/10.5194/acp-22-14735-2022, https://doi.org/10.5194/acp-22-14735-2022, 2022
Short summary
Short summary
We assimilate MOPITT CO satellite data in the TM5-4D-Var inverse modelling framework to estimate Amazon fire CO emissions for 2003–2018. We show that fire emissions have decreased over the analysis period, coincident with a decrease in deforestation rates. However, interannual variations in fire emissions are large, and they correlate strongly with soil moisture. Our results reveal an important role for robust, top-down fire CO emissions in quantifying and attributing Amazon fire intensity.
Angharad C. Stell, Michael Bertolacci, Andrew Zammit-Mangion, Matthew Rigby, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Xin Lan, Manfredi Manizza, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, and Anita L. Ganesan
Atmos. Chem. Phys., 22, 12945–12960, https://doi.org/10.5194/acp-22-12945-2022, https://doi.org/10.5194/acp-22-12945-2022, 2022
Short summary
Short summary
Nitrous oxide is a potent greenhouse gas and ozone-depleting substance, whose atmospheric abundance has risen throughout the contemporary record. In this work, we carry out the first global hierarchical Bayesian inversion to solve for nitrous oxide emissions. We derive increasing global nitrous oxide emissions over 2011–2020, which are mainly driven by emissions between 0° and 30°N, with the highest emissions recorded in 2020.
Maria Paula Pérez-Peña, Jenny A. Fisher, Dylan B. Millet, Hisashi Yashiro, Ray L. Langenfelds, Paul B. Krummel, and Scott H. Kable
Atmos. Chem. Phys., 22, 12367–12386, https://doi.org/10.5194/acp-22-12367-2022, https://doi.org/10.5194/acp-22-12367-2022, 2022
Short summary
Short summary
We used two atmospheric models to test the implications of previously unexplored aldehyde photochemistry on the atmospheric levels of molecular hydrogen (H2). We showed that the new photochemistry from aldehydes produces more H2 over densely forested areas. Compared to the rest of the world, it is over these forested regions where the produced H2 is more likely to be removed. The results highlight that other processes that contribute to atmospheric H2 levels should be studied further.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 22, 6087–6101, https://doi.org/10.5194/acp-22-6087-2022, https://doi.org/10.5194/acp-22-6087-2022, 2022
Short summary
Short summary
The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past as a result of the phasing out of ozone-depleting substances. Observations indicate that HFCs are used much less in certain refrigeration applications than previously projected. Current policies are projected to reduce emissions and the surface temperature contribution of HFCs from 0.28–0.44 °C to 0.14–0.31 °C in 2100. The Kigali Amendment is projected to reduce the contributions further to 0.04 °C in 2100.
Haklim Choi, Mi-Kyung Park, Paul J. Fraser, Hyeri Park, Sohyeon Geum, Jens Mühle, Jooil Kim, Ian Porter, Peter K. Salameh, Christina M. Harth, Bronwyn L. Dunse, Paul B. Krummel, Ray F. Weiss, Simon O'Doherty, Dickon Young, and Sunyoung Park
Atmos. Chem. Phys., 22, 5157–5173, https://doi.org/10.5194/acp-22-5157-2022, https://doi.org/10.5194/acp-22-5157-2022, 2022
Short summary
Short summary
We observed 12-year continuous CH3Br pollution signals at Gosan and estimated anthropogenic CH3Br emissions in eastern China. The analysis revealed a significant discrepancy between top-down estimates and the bottom-up emissions from the fumigation usage reported to the United Nations Environment Programme, likely due to unreported or inaccurately reported fumigation usage. This result provides information to monitor international compliance with the Montreal Protocol.
Peter Sperlich, Gordon W. Brailsford, Rowena C. Moss, John McGregor, Ross J. Martin, Sylvia Nichol, Sara Mikaloff-Fletcher, Beata Bukosa, Magda Mandic, C. Ian Schipper, Paul Krummel, and Alan D. Griffiths
Atmos. Meas. Tech., 15, 1631–1656, https://doi.org/10.5194/amt-15-1631-2022, https://doi.org/10.5194/amt-15-1631-2022, 2022
Short summary
Short summary
We tested an in situ analyser for carbon and oxygen isotopes in atmospheric CO2 at Baring Head, New Zealand’s observatory for Southern Ocean baseline air. The analyser was able to resolve regional signals of the terrestrial carbon cycle, although the analysis of small events was limited by analytical uncertainty. Further improvement of the instrument performance would be desirable for the robust analysis of distant signals and to resolve the small variability in Southern Ocean baseline air.
Jens Mühle, Lambert J. M. Kuijpers, Kieran M. Stanley, Matthew Rigby, Luke M. Western, Jooil Kim, Sunyoung Park, Christina M. Harth, Paul B. Krummel, Paul J. Fraser, Simon O'Doherty, Peter K. Salameh, Roland Schmidt, Dickon Young, Ronald G. Prinn, Ray H. J. Wang, and Ray F. Weiss
Atmos. Chem. Phys., 22, 3371–3378, https://doi.org/10.5194/acp-22-3371-2022, https://doi.org/10.5194/acp-22-3371-2022, 2022
Short summary
Short summary
Emissions of the strong greenhouse gas perfluorocyclobutane (c-C4F8) into the atmosphere have been increasing sharply since the early 2000s. These c-C4F8 emissions are highly correlated with the amount of hydrochlorofluorocarbon-22 produced to synthesize polytetrafluoroethylene (known for its non-stick properties) and related chemicals. From this process, c-C4F8 by-product is vented to the atmosphere. Avoiding these unnecessary c-C4F8 emissions could reduce the climate impact of this industry.
Lei Hu, Stephen A. Montzka, Fred Moore, Eric Hintsa, Geoff Dutton, M. Carolina Siso, Kirk Thoning, Robert W. Portmann, Kathryn McKain, Colm Sweeney, Isaac Vimont, David Nance, Bradley Hall, and Steven Wofsy
Atmos. Chem. Phys., 22, 2891–2907, https://doi.org/10.5194/acp-22-2891-2022, https://doi.org/10.5194/acp-22-2891-2022, 2022
Short summary
Short summary
The unexpected increase in CFC-11 emissions between 2012 and 2017 resulted in concerns about delaying the stratospheric ozone recovery. Although the subsequent decline of CFC-11 emissions indicated a mitigation in part to this problem, the regions fully responsible for these large emission changes were unclear. Here, our new estimate, based on atmospheric measurements from two global campaigns and from NOAA, suggests Asia primarily contributed to the global CFC-11 emission rise during 2012–2017.
Hélène Angot, Connor Davel, Christine Wiedinmyer, Gabrielle Pétron, Jashan Chopra, Jacques Hueber, Brendan Blanchard, Ilann Bourgeois, Isaac Vimont, Stephen A. Montzka, Ben R. Miller, James W. Elkins, and Detlev Helmig
Atmos. Chem. Phys., 21, 15153–15170, https://doi.org/10.5194/acp-21-15153-2021, https://doi.org/10.5194/acp-21-15153-2021, 2021
Short summary
Short summary
After a multidecadal global decline in atmospheric abundance of ethane and propane (precursors of tropospheric ozone and aerosols), previous work showed a reversal of this trend in 2009–2015 in the Northern Hemisphere due to the growth in oil and natural gas production in North America. Here we show a temporary pause in the growth of atmospheric ethane and propane in 2015–2018 and highlight the critical need for additional top-down studies to further constrain ethane and propane emissions.
Bharat Rastogi, John B. Miller, Micheal Trudeau, Arlyn E. Andrews, Lei Hu, Marikate Mountain, Thomas Nehrkorn, Bianca Baier, Kathryn McKain, John Mund, Kaiyu Guan, and Caroline B. Alden
Atmos. Chem. Phys., 21, 14385–14401, https://doi.org/10.5194/acp-21-14385-2021, https://doi.org/10.5194/acp-21-14385-2021, 2021
Short summary
Short summary
Predicting Earth's climate is difficult, partly due to uncertainty in forecasting how much CO2 can be removed by oceans and plants, because we cannot measure these exchanges directly on large scales. Satellites such as NASA's OCO-2 can provide part of the needed information, but data need to be highly precise and accurate. We evaluate these data and find small biases in certain months that are similar to the signals of interest. We argue that continued improvement of these data is necessary.
Masanori Takeda, Hideaki Nakajima, Isao Murata, Tomoo Nagahama, Isamu Morino, Geoffrey C. Toon, Ray F. Weiss, Jens Mühle, Paul B. Krummel, Paul J. Fraser, and Hsiang-Jui Wang
Atmos. Meas. Tech., 14, 5955–5976, https://doi.org/10.5194/amt-14-5955-2021, https://doi.org/10.5194/amt-14-5955-2021, 2021
Short summary
Short summary
This paper presents the first observations of atmospheric HFC-23 abundances with a ground-based remote sensing technique. The increasing trend of the HFC-23 abundances analyzed by this study agrees with that derived from other existing in situ measurements. This study indicates that ground-based FTIR observation has the capability to monitor the trend of atmospheric HFC-23 and could allow for monitoring the distribution of global atmospheric HFC-23 abundances in more detail.
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021, https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Short summary
This paper estimates UK emissions of important greenhouse gases (hydrofluorocarbons (HFCs)) using high-quality atmospheric observations and atmospheric modelling. We compare these estimates with those submitted by the UK to the United Nations. We conclude that global concentrations of these gases are still increasing. Our estimates for the UK are 73 % of those reported and that the UK emissions are now falling, demonstrating an impact of UK government policy.
Bradley D. Hall, Andrew M. Crotwell, Duane R. Kitzis, Thomas Mefford, Benjamin R. Miller, Michael F. Schibig, and Pieter P. Tans
Atmos. Meas. Tech., 14, 3015–3032, https://doi.org/10.5194/amt-14-3015-2021, https://doi.org/10.5194/amt-14-3015-2021, 2021
Short summary
Short summary
We have recently revised the carbon dioxide calibration scale used by numerous laboratories that measure atmospheric CO2. The revision follows from an improved understanding of the manometric method used to determine the absolute amount of CO2 in an atmospheric air sample. The new scale is 0.18 μmol mol−1 (ppm) greater than the previous scale at 400 ppm CO2. While this difference is small in relative terms (0.045 %), it is significant in terms of atmospheric monitoring.
Michał Gałkowski, Armin Jordan, Michael Rothe, Julia Marshall, Frank-Thomas Koch, Jinxuan Chen, Anna Agusti-Panareda, Andreas Fix, and Christoph Gerbig
Atmos. Meas. Tech., 14, 1525–1544, https://doi.org/10.5194/amt-14-1525-2021, https://doi.org/10.5194/amt-14-1525-2021, 2021
Short summary
Short summary
We present results of atmospheric measurements of greenhouse gases, performed over Europe in 2018 aboard German research aircraft HALO as part of the CoMet 1.0 (Carbon Dioxide and Methane Mission). In our analysis, we describe data quality, discuss observed mixing ratios and show an example of describing a regional methane source using stable isotopic composition based on the collected air samples. We also quantitatively compare our results to selected global atmospheric modelling systems.
Daniel Say, Alistair J. Manning, Luke M. Western, Dickon Young, Adam Wisher, Matthew Rigby, Stefan Reimann, Martin K. Vollmer, Michela Maione, Jgor Arduini, Paul B. Krummel, Jens Mühle, Christina M. Harth, Brendan Evans, Ray F. Weiss, Ronald G. Prinn, and Simon O'Doherty
Atmos. Chem. Phys., 21, 2149–2164, https://doi.org/10.5194/acp-21-2149-2021, https://doi.org/10.5194/acp-21-2149-2021, 2021
Short summary
Short summary
Perfluorocarbons (PFCs) are potent greenhouse gases with exceedingly long lifetimes. We used atmospheric measurements from a global monitoring network to track the accumulation of these gases in the atmosphere. In the case of the two most abundant PFCs, recent measurements indicate that global emissions are increasing. In Europe, we used a model to estimate regional PFC emissions. Our results show that there was no significant decline in northwest European PFC emissions between 2010 and 2019.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Haeyoung Lee, Edward J. Dlugokencky, Jocelyn C. Turnbull, Sepyo Lee, Scott J. Lehman, John B. Miller, Gabrielle Pétron, Jeong-Sik Lim, Gang-Woong Lee, Sang-Sam Lee, and Young-San Park
Atmos. Chem. Phys., 20, 12033–12045, https://doi.org/10.5194/acp-20-12033-2020, https://doi.org/10.5194/acp-20-12033-2020, 2020
Short summary
Short summary
To understand South Korea's CO2 emissions and sinks as well as those of the surrounding region, we used flask-air samples collected for 2 years at Anmyeondo (36.53° N, 126.32° E; 46 m a.s.l.), South Korea, for analysis of observed 14C in atmospheric CO2 as a tracer of fossil fuel CO2 contribution (Cff). Here, we showed our observation result of 14C and Cff. SF6 and CO can be good proxies of Cff in this study, and the ratio of CO to Cff was compared to a bottom-up inventory.
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, https://doi.org/10.5194/gmd-13-3571-2020, 2020
Short summary
Short summary
This study provides the future greenhouse gas (GHG) concentrations under the new set of so-called SSP scenarios (the successors of the IPCC SRES and previous representative concentration pathway (RCP) scenarios). The projected CO2 concentrations range from 350 ppm for low-emission scenarios by 2150 to more than 2000 ppm under the high-emission scenarios. We also provide concentrations, latitudinal gradients, and seasonality for most of the other 42 considered GHGs.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Edward J. Dlugokencky, Ray L. Langenfelds, Michel Ramonet, Doug Worthy, and Bo Zheng
Atmos. Chem. Phys., 20, 9525–9546, https://doi.org/10.5194/acp-20-9525-2020, https://doi.org/10.5194/acp-20-9525-2020, 2020
Short summary
Short summary
The hydroxyl radical (OH), which is the dominant sink of methane (CH4), plays a key role in closing the global methane budget. This study quantifies how uncertainties in the hydroxyl radical can influence top-down estimates of CH4 emissions based on 4D Bayesian inversions with different OH fields and the same surface observations. We show that uncertainties in CH4 emissions driven by different OH fields are comparable to the uncertainties given by current bottom-up and top-down estimations.
Dipayan Paul, Hubertus A. Scheeren, Henk G. Jansen, Bert A. M. Kers, John B. Miller, Andrew M. Crotwell, Sylvia E. Michel, Luciana V. Gatti, Lucas G. Domingues, Caio S. C. Correia, Raiane A. L. Neves, Harro A. J. Meijer, and Wouter Peters
Atmos. Meas. Tech., 13, 4051–4064, https://doi.org/10.5194/amt-13-4051-2020, https://doi.org/10.5194/amt-13-4051-2020, 2020
Short summary
Short summary
For reliable measurements of CO2 mole fractions and its stable isotope composition in air samples, one needs to carefully dry them during collection. Here we describe evaluation of a portable, consumable-free and power-free Nafion-based drying system that is currently being used for sample collection over the Amazon. Laboratory tests indicate that this Nafion-based system does not influence the mole fraction measurements of CH4, CO, N2O, SF6, and CO2 and the stable isotope composition of CO2.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Peter G. Simmonds, Matthew Rigby, Alistair J. Manning, Sunyoung Park, Kieran M. Stanley, Archie McCulloch, Stephan Henne, Francesco Graziosi, Michela Maione, Jgor Arduini, Stefan Reimann, Martin K. Vollmer, Jens Mühle, Simon O'Doherty, Dickon Young, Paul B. Krummel, Paul J. Fraser, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Mi-Kyung Park, Hyeri Park, Tim Arnold, Chris Rennick, L. Paul Steele, Blagoj Mitrevski, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 20, 7271–7290, https://doi.org/10.5194/acp-20-7271-2020, https://doi.org/10.5194/acp-20-7271-2020, 2020
Short summary
Short summary
Sulfur hexafluoride (SF6) is a potent greenhouse gas which is regulated under the Kyoto Protocol. From a 40-year record of measurements, collected at five global monitoring sites and archived air samples, we show that its concentration in the atmosphere has steadily increased. Using modelling techniques, we estimate that global emissions have increased by about 24 % over the past decade. We find that this increase is driven by the demand for SF6-insulated switchgear in developing countries.
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma C. Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020, https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary
Short summary
We update the tropospheric trends and emissions of six perfluorocarbon (PFC) gases, including separate isomers. Trends for these strong greenhouse gases are still increasing, but at slower rates than previously. The lack of natural sinks results in the global accumulation of 833 million metric tonnes of CO2 equivalent for these six PFCs by 2017. Modelling results indicate potential source regions and types in East Asia, but we find that many emissions are unaccounted for in emission reports.
Jian He, Vaishali Naik, Larry W. Horowitz, Ed Dlugokencky, and Kirk Thoning
Atmos. Chem. Phys., 20, 805–827, https://doi.org/10.5194/acp-20-805-2020, https://doi.org/10.5194/acp-20-805-2020, 2020
Short summary
Short summary
In this work, methane representation in AM4.1 is improved by optimizing CH4 emissions to match surface observations. We find increases in CH4 sources balanced by increases in sinks lead to CH4 stabilization during 1999–2006, and anthropogenic sources (e.g., agriculture, energy, and waste) are more likely major contributors to the renewed growth after 2006. Increases in CH4 emissions and decreases in OH levels during 2008–2015 prolong CH4 lifetime and amplify methane response to emission changes.
Roger J. Francey, Jorgen S. Frederiksen, L. Paul Steele, and Ray L. Langenfelds
Atmos. Chem. Phys., 19, 14741–14754, https://doi.org/10.5194/acp-19-14741-2019, https://doi.org/10.5194/acp-19-14741-2019, 2019
Short summary
Short summary
25-year composites of interhemispheric baseline CO2 differences demonstrate close agreement between 4 monitoring networks. Variability from monthly to multiyear time frames mostly reflects variability in upper troposphere dynamical indices chosen to represent eddy and mean transport interhemispheric exchange. Monthly interhemispheric atmospheric fluxes are much larger than air–surface terrestrial exchanges. The composite differences offer unusual constraints on transport in global carbon models.
Jens Mühle, Cathy M. Trudinger, Luke M. Western, Matthew Rigby, Martin K. Vollmer, Sunyoung Park, Alistair J. Manning, Daniel Say, Anita Ganesan, L. Paul Steele, Diane J. Ivy, Tim Arnold, Shanlan Li, Andreas Stohl, Christina M. Harth, Peter K. Salameh, Archie McCulloch, Simon O'Doherty, Mi-Kyung Park, Chun Ok Jo, Dickon Young, Kieran M. Stanley, Paul B. Krummel, Blagoj Mitrevski, Ove Hermansen, Chris Lunder, Nikolaos Evangeliou, Bo Yao, Jooil Kim, Benjamin Hmiel, Christo Buizert, Vasilii V. Petrenko, Jgor Arduini, Michela Maione, David M. Etheridge, Eleni Michalopoulou, Mike Czerniak, Jeffrey P. Severinghaus, Stefan Reimann, Peter G. Simmonds, Paul J. Fraser, Ronald G. Prinn, and Ray F. Weiss
Atmos. Chem. Phys., 19, 10335–10359, https://doi.org/10.5194/acp-19-10335-2019, https://doi.org/10.5194/acp-19-10335-2019, 2019
Short summary
Short summary
We discuss atmospheric concentrations and emissions of the strong greenhouse gas perfluorocyclobutane. A large fraction of recent emissions stem from China, India, and Russia, probably as a by-product from the production of fluoropolymers and fluorochemicals. Most historic emissions likely stem from developed countries. Total emissions are higher than what is being reported. Clearly, more measurements and better reporting are needed to understand emissions of this and other greenhouse gases.
Daniel Say, Anita L. Ganesan, Mark F. Lunt, Matthew Rigby, Simon O'Doherty, Christina Harth, Alistair J. Manning, Paul B. Krummel, and Stephane Bauguitte
Atmos. Chem. Phys., 19, 9865–9885, https://doi.org/10.5194/acp-19-9865-2019, https://doi.org/10.5194/acp-19-9865-2019, 2019
Short summary
Short summary
Despite its emergence as a global economic power, very little information exists regarding India's halocarbon (CFC, HCFC, HFC and chlorocarbon) emissions. We report atmospheric measurements of these gases from above India, and use them to estimate India's emissions. Our results are consistent with the emissions profile of a developing country, with large emissions of HCFCs, HFCs and chlorocarbons not regulated under the Montreal Protocol, but little evidence for ongoing CFC consumption.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Mauro Rubino, David M. Etheridge, David P. Thornton, Russell Howden, Colin E. Allison, Roger J. Francey, Ray L. Langenfelds, L. Paul Steele, Cathy M. Trudinger, Darren A. Spencer, Mark A. J. Curran, Tas D. van Ommen, and Andrew M. Smith
Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019, https://doi.org/10.5194/essd-11-473-2019, 2019
Short summary
Short summary
The scientific community uses numerical models to predict future atmospheric levels of greenhouse gases causing global warming. This study presents the history of atmospheric concentration of the major greenhouse gases over the last 2000 years measured in ice core bubbles from the site of Law Dome (East Antarctica). The associated dataset is useful to test climate models and help provide accurate predictions of future climate change.
Martin K. Vollmer, François Bernard, Blagoj Mitrevski, L. Paul Steele, Cathy M. Trudinger, Stefan Reimann, Ray L. Langenfelds, Paul B. Krummel, Paul J. Fraser, David M. Etheridge, Mark A. J. Curran, and James B. Burkholder
Atmos. Chem. Phys., 19, 3481–3492, https://doi.org/10.5194/acp-19-3481-2019, https://doi.org/10.5194/acp-19-3481-2019, 2019
Short summary
Short summary
We have discovered a new compound in the atmosphere, octafluorooxolane (c-C4F8O), from measurements in archived air samples. From our laboratory studies, we find that c-C4F8O is a very powerful greenhouse gas thereby contributing to global warming, and that it has a very long atmospheric lifetime of more than 3500 years. Based on our measurements we could reconstruct its atmospheric evolution over more than 4 decades. Based on this, we could estimate the global emissions of c-C4F8O.
Daniel Say, Anita L. Ganesan, Mark F. Lunt, Matthew Rigby, Simon O'Doherty, Chris Harth, Alistair J. Manning, Paul B. Krummel, and Stephane Bauguitte
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1287, https://doi.org/10.5194/acp-2018-1287, 2019
Publication in ACP not foreseen
Short summary
Short summary
India is a potentially significant source of chlorocarbons, gases typically used as solvents and feedstocks. Given the potential for these species to deplete stratospheric ozone, understanding their sources is important. We use flask measurements collected from an aircraft to infer India's chlorocarbon emissions. We link emissions of carbon tetrachloride to the industrial production of other chloromethanes, and provide evidence for rapid growth in India's emissions of dichloromethane.
Ann R. Stavert, Rachel M. Law, Marcel van der Schoot, Ray L. Langenfelds, Darren A. Spencer, Paul B. Krummel, Scott D. Chambers, Alistair G. Williams, Sylvester Werczynski, Roger J. Francey, and Russell T. Howden
Atmos. Meas. Tech., 12, 1103–1121, https://doi.org/10.5194/amt-12-1103-2019, https://doi.org/10.5194/amt-12-1103-2019, 2019
Short summary
Short summary
The Southern Ocean is a key sink of carbon dioxide (CO2), but efforts to study trends in and the variability of the sink have been hindered by the limited number of CO2 measurements in this region. Here we describe a set of new in situ continuous (minutely) atmospheric CO2 observations. We show that this new record better captures long-term changes and seasonality than traditional 2-weekly flask records. As such, this data set will provide key insights into the changing Southern Ocean sink.
Bradley D. Hall, Andrew M. Crotwell, Benjamin R. Miller, Michael Schibig, and James W. Elkins
Atmos. Meas. Tech., 12, 517–524, https://doi.org/10.5194/amt-12-517-2019, https://doi.org/10.5194/amt-12-517-2019, 2019
Short summary
Short summary
We have used a one-step method for gravimetric preparation of CO2-in-air standards in aluminum cylinders. We consider both adsorption to stainless steel surfaces used in the transfer of highly pure CO2 and adsorption of CO2 to cylinder walls. This work compliments ongoing efforts to support atmospheric monitoring of CO2.
Ronald G. Prinn, Ray F. Weiss, Jgor Arduini, Tim Arnold, H. Langley DeWitt, Paul J. Fraser, Anita L. Ganesan, Jimmy Gasore, Christina M. Harth, Ove Hermansen, Jooil Kim, Paul B. Krummel, Shanlan Li, Zoë M. Loh, Chris R. Lunder, Michela Maione, Alistair J. Manning, Ben R. Miller, Blagoj Mitrevski, Jens Mühle, Simon O'Doherty, Sunyoung Park, Stefan Reimann, Matt Rigby, Takuya Saito, Peter K. Salameh, Roland Schmidt, Peter G. Simmonds, L. Paul Steele, Martin K. Vollmer, Ray H. Wang, Bo Yao, Yoko Yokouchi, Dickon Young, and Lingxi Zhou
Earth Syst. Sci. Data, 10, 985–1018, https://doi.org/10.5194/essd-10-985-2018, https://doi.org/10.5194/essd-10-985-2018, 2018
Short summary
Short summary
We present the data and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). At high frequency and at multiple sites, AGAGE measures all the important chemicals in the Montreal Protocol for the protection of the ozone layer and the non-carbon-dioxide gases assessed by the Intergovernmental Panel on Climate Change. AGAGE uses these data to estimate sources and sinks of all these gases and has operated since 1978.
Karina E. Adcock, Claire E. Reeves, Lauren J. Gooch, Emma C. Leedham Elvidge, Matthew J. Ashfold, Carl A. M. Brenninkmeijer, Charles Chou, Paul J. Fraser, Ray L. Langenfelds, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Siew Moi Phang, Azizan Abu Samah, Thomas Röckmann, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, https://doi.org/10.5194/acp-18-4737-2018, 2018
Martin Kunz, Jost V. Lavric, Christoph Gerbig, Pieter Tans, Don Neff, Christine Hummelgård, Hans Martin, Henrik Rödjegård, Burkhard Wrenger, and Martin Heimann
Atmos. Meas. Tech., 11, 1833–1849, https://doi.org/10.5194/amt-11-1833-2018, https://doi.org/10.5194/amt-11-1833-2018, 2018
Short summary
Short summary
Unmanned aircraft could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). During validation of its CO2 measurements in simulated and real flights we found a measurement error of 1.2 μmol mol−1 or better with no indication of bias. COCAP is a self-contained package that has proven well suited for operation on board UASs.
Peter G. Simmonds, Matthew Rigby, Archie McCulloch, Martin K. Vollmer, Stephan Henne, Jens Mühle, Simon O'Doherty, Alistair J. Manning, Paul B. Krummel, Paul J. Fraser, Dickon Young, Ray F. Weiss, Peter K. Salameh, Christina M. Harth, Stefan Reimann, Cathy M. Trudinger, L. Paul Steele, Ray H. J. Wang, Diane J. Ivy, Ronald G. Prinn, Blagoj Mitrevski, and David M. Etheridge
Atmos. Chem. Phys., 18, 4153–4169, https://doi.org/10.5194/acp-18-4153-2018, https://doi.org/10.5194/acp-18-4153-2018, 2018
Short summary
Short summary
Recent measurements of the potent greenhouse gas HFC-23, a by-product of HCFC-22 production, show a 28 % increase in the atmospheric mole fraction from 2009 to 2016. A minimum in the atmospheric abundance of HFC-23 in 2009 was attributed to abatement of HFC-23 emissions by incineration under the Clean Development Mechanism (CDM). Our results indicate that the recent increase in HFC-23 emissions is driven by failure of mitigation under the CDM to keep pace with increased HCFC-22 production.
Emma C. Leedham Elvidge, Harald Bönisch, Carl A. M. Brenninkmeijer, Andreas Engel, Paul J. Fraser, Eileen Gallacher, Ray Langenfelds, Jens Mühle, David E. Oram, Eric A. Ray, Anna R. Ridley, Thomas Röckmann, William T. Sturges, Ray F. Weiss, and Johannes C. Laube
Atmos. Chem. Phys., 18, 3369–3385, https://doi.org/10.5194/acp-18-3369-2018, https://doi.org/10.5194/acp-18-3369-2018, 2018
Short summary
Short summary
Chemical species measured in stratospheric air can be used as proxies for stratospheric circulation changes which cannot be measured directly. A range of tracers is important to understand changing stratospheric dynamics. We demonstrate the suitability of PFCs and HFCs as tracers and support recent work that reduces the current stratospheric lifetime of SF6. Updates to policy-relevant parameters (e.g. stratospheric lifetime) linked to this change are provided for O3-depleting substances.
Martin K. Vollmer, Dickon Young, Cathy M. Trudinger, Jens Mühle, Stephan Henne, Matthew Rigby, Sunyoung Park, Shanlan Li, Myriam Guillevic, Blagoj Mitrevski, Christina M. Harth, Benjamin R. Miller, Stefan Reimann, Bo Yao, L. Paul Steele, Simon A. Wyss, Chris R. Lunder, Jgor Arduini, Archie McCulloch, Songhao Wu, Tae Siek Rhee, Ray H. J. Wang, Peter K. Salameh, Ove Hermansen, Matthias Hill, Ray L. Langenfelds, Diane Ivy, Simon O'Doherty, Paul B. Krummel, Michela Maione, David M. Etheridge, Lingxi Zhou, Paul J. Fraser, Ronald G. Prinn, Ray F. Weiss, and Peter G. Simmonds
Atmos. Chem. Phys., 18, 979–1002, https://doi.org/10.5194/acp-18-979-2018, https://doi.org/10.5194/acp-18-979-2018, 2018
Short summary
Short summary
We measured the three chlorofluorocarbons (CFCs) CFC-13, CFC-114, and CFC-115 in the atmosphere because they are important in stratospheric ozone depletion. These compounds should have decreased in the atmosphere because they are banned by the Montreal Protocol but we find the opposite. Emissions over the last decade have not declined on a global scale. We use inverse modeling and our observations to find that a large part of the emissions originate in the Asian region.
Kelley C. Wells, Dylan B. Millet, Nicolas Bousserez, Daven K. Henze, Timothy J. Griffis, Sreelekha Chaliyakunnel, Edward J. Dlugokencky, Eri Saikawa, Gao Xiang, Ronald G. Prinn, Simon O'Doherty, Dickon Young, Ray F. Weiss, Geoff S. Dutton, James W. Elkins, Paul B. Krummel, Ray Langenfelds, and L. Paul Steele
Atmos. Chem. Phys., 18, 735–756, https://doi.org/10.5194/acp-18-735-2018, https://doi.org/10.5194/acp-18-735-2018, 2018
Short summary
Short summary
This paper uses three different frameworks to derive nitrous oxide (N2O) emissions based on global surface observations. One of these frameworks employs a new approach that allows for fast computation and explores a larger solution space than other methods. Our results point to a few conclusions about the global N2O budget, including a larger contribution from tropical sources, an overestimate of natural soil emissions, and an underestimate of agricultural sources particularly in springtime.
Xin Lan, Pieter Tans, Colm Sweeney, Arlyn Andrews, Andrew Jacobson, Molly Crotwell, Edward Dlugokencky, Jonathan Kofler, Patricia Lang, Kirk Thoning, and Sonja Wolter
Atmos. Chem. Phys., 17, 15151–15165, https://doi.org/10.5194/acp-17-15151-2017, https://doi.org/10.5194/acp-17-15151-2017, 2017
Short summary
Short summary
We analyze spatial patterns of column CO2 over North America using well-calibrated aircraft and tall tower measurements. We find that the long-term averaged spatial gradients of column CO2 across North America show a smooth pattern that mainly reflects the large-scale circulation. Our results can serve as a good reference for evaluating current and future column CO2 retrievals from both ground and satellite platforms.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Stephen Conley, Ian Faloona, Shobhit Mehrotra, Maxime Suard, Donald H. Lenschow, Colm Sweeney, Scott Herndon, Stefan Schwietzke, Gabrielle Pétron, Justin Pifer, Eric A. Kort, and Russell Schnell
Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017, https://doi.org/10.5194/amt-10-3345-2017, 2017
Short summary
Short summary
This paper describes a new method of quantifying surface trace gas emissions (e.g. methane) from small aircraft (e.g. Mooney, Cessna) in about 30 min. This technique greatly enhances our ability to rapidly respond in the event of catastrophic failures such as Aliso Canyon and Deep Water Horizon.
Pieter P. Tans, Andrew M. Crotwell, and Kirk W. Thoning
Atmos. Meas. Tech., 10, 2669–2685, https://doi.org/10.5194/amt-10-2669-2017, https://doi.org/10.5194/amt-10-2669-2017, 2017
Short summary
Short summary
We describe a new CO2 calibration system for the Central Calibration Laboratory of the World Meteorological Organization Global Atmosphere Watch program. The system uses two laser spectroscopic instruments to measure the three major CO2 isotopologues individually. We account for isotopic differences between standards in the calibration hierarchy when assigning CO2 mole fraction, eliminating bias due to variations in the isotopic composition.
Malte Meinshausen, Elisabeth Vogel, Alexander Nauels, Katja Lorbacher, Nicolai Meinshausen, David M. Etheridge, Paul J. Fraser, Stephen A. Montzka, Peter J. Rayner, Cathy M. Trudinger, Paul B. Krummel, Urs Beyerle, Josep G. Canadell, John S. Daniel, Ian G. Enting, Rachel M. Law, Chris R. Lunder, Simon O'Doherty, Ron G. Prinn, Stefan Reimann, Mauro Rubino, Guus J. M. Velders, Martin K. Vollmer, Ray H. J. Wang, and Ray Weiss
Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, https://doi.org/10.5194/gmd-10-2057-2017, 2017
Short summary
Short summary
Climate change is primarily driven by human-induced increases of greenhouse gas (GHG) concentrations. Based on ongoing community efforts (e.g. AGAGE and NOAA networks, ice cores), this study presents historical concentrations of CO2, CH4, N2O and 40 other GHGs from year 0 to year 2014. The data is recommended as input for climate models for pre-industrial, historical runs under CMIP6. Global means, but also latitudinal by monthly surface concentration fields are provided.
Peter G. Simmonds, Matthew Rigby, Archie McCulloch, Simon O'Doherty, Dickon Young, Jens Mühle, Paul B. Krummel, Paul Steele, Paul J. Fraser, Alistair J. Manning, Ray F. Weiss, Peter K. Salameh, Chris M. Harth, Ray H. J. Wang, and Ronald G. Prinn
Atmos. Chem. Phys., 17, 4641–4655, https://doi.org/10.5194/acp-17-4641-2017, https://doi.org/10.5194/acp-17-4641-2017, 2017
Short summary
Short summary
This paper reports how long-term atmospheric measurements demonstrate that the Montreal Protocol has been effective in controlling production and consumption of the hydrochlorofluorocarbons, a group of industrial chemicals that have detrimental effects on the ozone layer and also contribute to global warming as greenhouse gases and their hydrofluorocarbon substitutes which are also potent greenhouse gases but do not materially affect the ozone layer.
Aki Tsuruta, Tuula Aalto, Leif Backman, Janne Hakkarainen, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Renato Spahni, Sander Houweling, Marko Laine, Ed Dlugokencky, Angel J. Gomez-Pelaez, Marcel van der Schoot, Ray Langenfelds, Raymond Ellul, Jgor Arduini, Francesco Apadula, Christoph Gerbig, Dietrich G. Feist, Rigel Kivi, Yukio Yoshida, and Wouter Peters
Geosci. Model Dev., 10, 1261–1289, https://doi.org/10.5194/gmd-10-1261-2017, https://doi.org/10.5194/gmd-10-1261-2017, 2017
Short summary
Short summary
In this study, we found that the average global methane emission for 2000–2012, estimated by the CTE-CH4 model, was 516±51 Tg CH4 yr-1, and the estimates for 2007–2012 were 4 % larger than for 2000–2006. The model estimates are sensitive to inputs and setups, but according to sensitivity tests the study suggests that the increase in atmospheric methane concentrations during 21st century was due to an increase in emissions from the 35S-EQ latitudinal bands.
Whitney Bader, Benoît Bovy, Stephanie Conway, Kimberly Strong, Dan Smale, Alexander J. Turner, Thomas Blumenstock, Chris Boone, Martine Collaud Coen, Ancelin Coulon, Omaira Garcia, David W. T. Griffith, Frank Hase, Petra Hausmann, Nicholas Jones, Paul Krummel, Isao Murata, Isamu Morino, Hideaki Nakajima, Simon O'Doherty, Clare Paton-Walsh, John Robinson, Rodrigue Sandrin, Matthias Schneider, Christian Servais, Ralf Sussmann, and Emmanuel Mahieu
Atmos. Chem. Phys., 17, 2255–2277, https://doi.org/10.5194/acp-17-2255-2017, https://doi.org/10.5194/acp-17-2255-2017, 2017
Short summary
Short summary
An increase of 0.31 ± 0.03 % year−1 of atmospheric methane is reported using 10 years of solar observations performed at 10 ground-based stations since 2005. These trend agree with a GEOS-Chem-tagged simulation that accounts for the contribution of each emission source and one sink in the total methane. The GEOS-Chem simulation shows that anthropogenic emissions from coal mining and gas and oil transport and exploration have played a major role in the increase methane since 2005.
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016, https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Short summary
Carbon tetrachloride (CCl4) is a compound which, when released into the atmosphere, can cause depletion of the stratospheric ozone layer. Its emissions are controlled under the Montreal Protocol, and its atmospheric abundance is slowly decreasing. However, this decrease is not as fast as expected based on estimates of its emissions and its atmospheric lifetime. We have used an atmospheric model to look at the uncertainties in the CCl4 lifetime and to examine the impact on its atmospheric decay.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Johannes C. Laube, Norfazrin Mohd Hanif, Patricia Martinerie, Eileen Gallacher, Paul J. Fraser, Ray Langenfelds, Carl A. M. Brenninkmeijer, Jakob Schwander, Emmanuel Witrant, Jia-Lin Wang, Chang-Feng Ou-Yang, Lauren J. Gooch, Claire E. Reeves, William T. Sturges, and David E. Oram
Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, https://doi.org/10.5194/acp-16-15347-2016, 2016
Cathy M. Trudinger, Paul J. Fraser, David M. Etheridge, William T. Sturges, Martin K. Vollmer, Matt Rigby, Patricia Martinerie, Jens Mühle, David R. Worton, Paul B. Krummel, L. Paul Steele, Benjamin R. Miller, Johannes Laube, Francis S. Mani, Peter J. Rayner, Christina M. Harth, Emmanuel Witrant, Thomas Blunier, Jakob Schwander, Simon O'Doherty, and Mark Battle
Atmos. Chem. Phys., 16, 11733–11754, https://doi.org/10.5194/acp-16-11733-2016, https://doi.org/10.5194/acp-16-11733-2016, 2016
Short summary
Short summary
Perfluorocarbons (PFCs) are potent, long-lived and mostly man-made greenhouse gases released to the atmosphere mainly during aluminium production and semiconductor manufacture. Here we present the first continuous histories of three PFCs from 1800 to 2014, derived from measurements of these PFCs in the atmosphere and in air bubbles in polar ice. The records show how human actions have affected these important greenhouse gases over the past century.
Aki Tsuruta, Tuula Aalto, Leif Backman, Janne Hakkarainen, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Renato Spahni, Sander Houweling, Marko Laine, Marcel van der Schoot, Ray Langenfelds, Raymond Ellul, and Wouter Peters
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-181, https://doi.org/10.5194/gmd-2016-181, 2016
Revised manuscript has not been submitted
Short summary
Short summary
In this study, we found that methane emission estimates, driven by the CTE-CH4 model, depend on model setups and inputs, especially for regional estimates. An optimal setup makes the estimates stable, but inputs, such as emission estimates from inventories, and observations, also play significant role. The results can be used for an extended analysis on relative contributions of methane emissions to atmospheric methane concentration changes in recent decades.
Joe McNorton, Martyn P. Chipperfield, Manuel Gloor, Chris Wilson, Wuhu Feng, Garry D. Hayman, Matt Rigby, Paul B. Krummel, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, Ed Dlugokencky, and Steve A. Montzka
Atmos. Chem. Phys., 16, 7943–7956, https://doi.org/10.5194/acp-16-7943-2016, https://doi.org/10.5194/acp-16-7943-2016, 2016
Short summary
Short summary
Methane (CH4) is an important greenhouse gas. The growth of atmospheric CH4 stalled from 1999 to 2006, with current explanations focussed mainly on changing surface fluxes. We combine models with observations and meteorological data to assess the atmospheric contribution to CH4 changes. We find that variations in mean atmospheric hydroxyl concentration can explain part of the stall in growth. Our study highlights the role of multi-annual variability in atmospheric chemistry in global CH4 trends.
M. Chirkov, G. P. Stiller, A. Laeng, S. Kellmann, T. von Clarmann, C. D. Boone, J. W. Elkins, A. Engel, N. Glatthor, U. Grabowski, C. M. Harth, M. Kiefer, F. Kolonjari, P. B. Krummel, A. Linden, C. R. Lunder, B. R. Miller, S. A. Montzka, J. Mühle, S. O'Doherty, J. Orphal, R. G. Prinn, G. Toon, M. K. Vollmer, K. A. Walker, R. F. Weiss, A. Wiegele, and D. Young
Atmos. Chem. Phys., 16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, https://doi.org/10.5194/acp-16-3345-2016, 2016
Short summary
Short summary
HCFC-22 global distributions from MIPAS measurements for 2005 to 2012 are presented. Tropospheric trends are in good agreement with ground-based observations. A layer of enhanced HCFC-22 in the upper tropospheric tropics and northern subtropics is identified to come from Asian sources uplifted in the Asian monsoon. Stratospheric distributions provide show seasonal, semi-annual, and QBO-related variations. Hemispheric asymmetries of trends hint towards a change in the stratospheric circulation.
P. G. Simmonds, M. Rigby, A. J. Manning, M. F. Lunt, S. O'Doherty, A. McCulloch, P. J. Fraser, S. Henne, M. K. Vollmer, J. Mühle, R. F. Weiss, P. K. Salameh, D. Young, S. Reimann, A. Wenger, T. Arnold, C. M. Harth, P. B. Krummel, L. P. Steele, B. L. Dunse, B. R. Miller, C. R. Lunder, O. Hermansen, N. Schmidbauer, T. Saito, Y. Yokouchi, S. Park, S. Li, B. Yao, L. X. Zhou, J. Arduini, M. Maione, R. H. J. Wang, D. Ivy, and R. G. Prinn
Atmos. Chem. Phys., 16, 365–382, https://doi.org/10.5194/acp-16-365-2016, https://doi.org/10.5194/acp-16-365-2016, 2016
Short summary
Short summary
We report regional and global emissions estimates of HFC-152a using high frequency measurements from 11 observing sites and archived air samples dating back to 1978 together with atmospheric transport models. The "bottom-up" emissions of HFC-152a reported to the UNFCCC appear to significantly underestimate those reported here from observations. This discrepancy we suggest arises from largely underestimated USA and undeclared Asian emissions.
S. J. Lawson, M. D. Keywood, I. E. Galbally, J. L. Gras, J. M. Cainey, M. E. Cope, P. B. Krummel, P. J. Fraser, L. P. Steele, S. T. Bentley, C. P. Meyer, Z. Ristovski, and A. H. Goldstein
Atmos. Chem. Phys., 15, 13393–13411, https://doi.org/10.5194/acp-15-13393-2015, https://doi.org/10.5194/acp-15-13393-2015, 2015
Short summary
Short summary
Biomass burning (BB) plumes were opportunistically measured at the Cape Grim Baseline Station in Tasmania, Australia. We provide a unique set of trace gas and particle emission factors for temperate Australian coastal heathland fires, and attribute a major short-lived enhancement in emission ratios to a minor rainfall event. The ability of BB particles to act as cloud condensation nuclei, and the contribution of BB emissions to observed particle growth and ozone enhancements are discussed.
K. C. Wells, D. B. Millet, N. Bousserez, D. K. Henze, S. Chaliyakunnel, T. J. Griffis, Y. Luan, E. J. Dlugokencky, R. G. Prinn, S. O'Doherty, R. F. Weiss, G. S. Dutton, J. W. Elkins, P. B. Krummel, R. Langenfelds, L. P. Steele, E. A. Kort, S. C. Wofsy, and T. Umezawa
Geosci. Model Dev., 8, 3179–3198, https://doi.org/10.5194/gmd-8-3179-2015, https://doi.org/10.5194/gmd-8-3179-2015, 2015
Short summary
Short summary
This paper introduces a new inversion framework for N2O using GEOS-Chem and its adjoint, which we employed in a series of observing system simulation experiments to evaluate the source and sink constraints provided by surface and aircraft-based N2O measurements. We also applied a new approach for estimating a posteriori uncertainty for high-dimensional inversions, and used it to quantify the spatial and temporal resolution of N2O emission constraints achieved with the current observing network.
S. J. Allin, J. C. Laube, E. Witrant, J. Kaiser, E. McKenna, P. Dennis, R. Mulvaney, E. Capron, P. Martinerie, T. Röckmann, T. Blunier, J. Schwander, P. J. Fraser, R. L. Langenfelds, and W. T. Sturges
Atmos. Chem. Phys., 15, 6867–6877, https://doi.org/10.5194/acp-15-6867-2015, https://doi.org/10.5194/acp-15-6867-2015, 2015
Short summary
Short summary
Stratospheric ozone protects life on Earth from harmful UV-B radiation. Chlorofluorocarbons (CFCs) are man-made compounds which act to destroy this barrier.
This paper presents (1) the first measurements of the stratospheric δ(37Cl) of CFCs -11 and -113; (2) the first quantification of long-term trends in the tropospheric δ(37Cl) of CFCs -11, -12 and -113.
This study provides a better understanding of source and sink processes associated with these destructive compounds.
J. A. Fisher, S. R. Wilson, G. Zeng, J. E. Williams, L. K. Emmons, R. L. Langenfelds, P. B. Krummel, and L. P. Steele
Atmos. Chem. Phys., 15, 3217–3239, https://doi.org/10.5194/acp-15-3217-2015, https://doi.org/10.5194/acp-15-3217-2015, 2015
Short summary
Short summary
The Southern Hemisphere (SH) serves as an important test bed for evaluating our understanding of the processes that drive the composition of the clean background atmosphere. Using data from two aircraft campaigns, combined with four atmospheric chemistry models, we find a large sensitivity in the remote SH to biogenic emissions and their subsequent chemistry and transport. Future model evaluation and measurement campaigns should prioritize reducing uncertainties in these processes.
A. Ghosh, P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krummel, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa
Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, https://doi.org/10.5194/acp-15-2595-2015, 2015
Short summary
Short summary
Atmospheric CH4 increased from 900ppb to 1800ppb during the period 1900–2010 at a rate unprecedented in any observational records. We use bottom-up emissions and a chemistry-transport model to simulate CH4. The optimized global total CH4 emission, estimated from the model–observation differences, increased at fastest rate during 1940–1990. Using δ13C of CH4 measurements we attribute this emission increase to biomass burning. Total CH4 lifetime is shortened by 4% over the simulation period.
P. Bergamaschi, M. Corazza, U. Karstens, M. Athanassiadou, R. L. Thompson, I. Pison, A. J. Manning, P. Bousquet, A. Segers, A. T. Vermeulen, G. Janssens-Maenhout, M. Schmidt, M. Ramonet, F. Meinhardt, T. Aalto, L. Haszpra, J. Moncrieff, M. E. Popa, D. Lowry, M. Steinbacher, A. Jordan, S. O'Doherty, S. Piacentino, and E. Dlugokencky
Atmos. Chem. Phys., 15, 715–736, https://doi.org/10.5194/acp-15-715-2015, https://doi.org/10.5194/acp-15-715-2015, 2015
Z. M. Loh, R. M. Law, K. D. Haynes, P. B. Krummel, L. P. Steele, P. J. Fraser, S. D. Chambers, and A. G. Williams
Atmos. Chem. Phys., 15, 305–317, https://doi.org/10.5194/acp-15-305-2015, https://doi.org/10.5194/acp-15-305-2015, 2015
Short summary
Short summary
The paper compares methane observations at Cape Grim, Tasmania, with model-simulated methane to better constrain methane fluxes from southeastern Australia. Inventory estimates of anthropogenic methane emissions appear to be supported by observed atmospheric methane. A missing methane source in springtime (October to November) is tentatively attributed to wetland emissions.
A. Fraser, P. I. Palmer, L. Feng, H. Bösch, R. Parker, E. J. Dlugokencky, P. B. Krummel, and R. L. Langenfelds
Atmos. Chem. Phys., 14, 12883–12895, https://doi.org/10.5194/acp-14-12883-2014, https://doi.org/10.5194/acp-14-12883-2014, 2014
Short summary
Short summary
Satellite measurements of CO2 and CH4 can be subject to regional systematic errors that can consequently compromise their ability to infer robust flux estimates of these two gases. We develop a method to use retrieved ratios of CH4 and CO2 that are less affected by systematic error. We show that additional in situ data are needed to anchor these observed ratios so they can simultaneously infer fluxes of CO2 and CH4. We argue the ratio data will provide a more faithful description of true fluxes.
S. O'Doherty, M. Rigby, J. Mühle, D. J. Ivy, B. R. Miller, D. Young, P. G. Simmonds, S. Reimann, M. K. Vollmer, P. B. Krummel, P. J. Fraser, L. P. Steele, B. Dunse, P. K. Salameh, C. M. Harth, T. Arnold, R. F. Weiss, J. Kim, S. Park, S. Li, C. Lunder, O. Hermansen, N. Schmidbauer, L. X. Zhou, B. Yao, R. H. J. Wang, A. J. Manning, and R. G. Prinn
Atmos. Chem. Phys., 14, 9249–9258, https://doi.org/10.5194/acp-14-9249-2014, https://doi.org/10.5194/acp-14-9249-2014, 2014
S. N. Vardag, S. Hammer, S. O'Doherty, T. G. Spain, B. Wastine, A. Jordan, and I. Levin
Atmos. Chem. Phys., 14, 8403–8418, https://doi.org/10.5194/acp-14-8403-2014, https://doi.org/10.5194/acp-14-8403-2014, 2014
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014, https://doi.org/10.5194/acp-14-6177-2014, 2014
H. F. Zhang, B. Z. Chen, I. T. van der Laan-Luijk, T. Machida, H. Matsueda, Y. Sawa, Y. Fukuyama, R. Langenfelds, M. van der Schoot, G. Xu, J. W. Yan, M. L. Cheng, L. X. Zhou, P. P. Tans, and W. Peters
Atmos. Chem. Phys., 14, 5807–5824, https://doi.org/10.5194/acp-14-5807-2014, https://doi.org/10.5194/acp-14-5807-2014, 2014
E. Saikawa, R. G. Prinn, E. Dlugokencky, K. Ishijima, G. S. Dutton, B. D. Hall, R. Langenfelds, Y. Tohjima, T. Machida, M. Manizza, M. Rigby, S. O'Doherty, P. K. Patra, C. M. Harth, R. F. Weiss, P. B. Krummel, M. van der Schoot, P. J. Fraser, L. P. Steele, S. Aoki, T. Nakazawa, and J. W. Elkins
Atmos. Chem. Phys., 14, 4617–4641, https://doi.org/10.5194/acp-14-4617-2014, https://doi.org/10.5194/acp-14-4617-2014, 2014
R. L. Thompson, P. K. Patra, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, C. Wilson, P. Bergamaschi, E. Dlugokencky, C. Sweeney, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, M. Saunois, M. Chipperfield, and P. Bousquet
Atmos. Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, https://doi.org/10.5194/acp-14-4349-2014, 2014
A. L. Ganesan, M. Rigby, A. Zammit-Mangion, A. J. Manning, R. G. Prinn, P. J. Fraser, C. M. Harth, K.-R. Kim, P. B. Krummel, S. Li, J. Mühle, S. J. O'Doherty, S. Park, P. K. Salameh, L. P. Steele, and R. F. Weiss
Atmos. Chem. Phys., 14, 3855–3864, https://doi.org/10.5194/acp-14-3855-2014, https://doi.org/10.5194/acp-14-3855-2014, 2014
A. E. Andrews, J. D. Kofler, M. E. Trudeau, J. C. Williams, D. H. Neff, K. A. Masarie, D. Y. Chao, D. R. Kitzis, P. C. Novelli, C. L. Zhao, E. J. Dlugokencky, P. M. Lang, M. J. Crotwell, M. L. Fischer, M. J. Parker, J. T. Lee, D. D. Baumann, A. R. Desai, C. O. Stanier, S. F. J. De Wekker, D. E. Wolfe, J. W. Munger, and P. P. Tans
Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, https://doi.org/10.5194/amt-7-647-2014, 2014
M. E. Popa, M. K. Vollmer, A. Jordan, W. A. Brand, S. L. Pathirana, M. Rothe, and T. Röckmann
Atmos. Chem. Phys., 14, 2105–2123, https://doi.org/10.5194/acp-14-2105-2014, https://doi.org/10.5194/acp-14-2105-2014, 2014
R. L. Thompson, F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima, T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima, and S. Aoki
Atmos. Chem. Phys., 14, 1801–1817, https://doi.org/10.5194/acp-14-1801-2014, https://doi.org/10.5194/acp-14-1801-2014, 2014
B. D. Hall, A. Engel, J. Mühle, J. W. Elkins, F. Artuso, E. Atlas, M. Aydin, D. Blake, E.-G. Brunke, S. Chiavarini, P. J. Fraser, J. Happell, P. B. Krummel, I. Levin, M. Loewenstein, M. Maione, S. A. Montzka, S. O'Doherty, S. Reimann, G. Rhoderick, E. S. Saltzman, H. E. Scheel, L. P. Steele, M. K. Vollmer, R. F. Weiss, D. Worthy, and Y. Yokouchi
Atmos. Meas. Tech., 7, 469–490, https://doi.org/10.5194/amt-7-469-2014, https://doi.org/10.5194/amt-7-469-2014, 2014
C. Cressot, F. Chevallier, P. Bousquet, C. Crevoisier, E. J. Dlugokencky, A. Fortems-Cheiney, C. Frankenberg, R. Parker, I. Pison, R. A. Scheepmaker, S. A. Montzka, P. B. Krummel, L. P. Steele, and R. L. Langenfelds
Atmos. Chem. Phys., 14, 577–592, https://doi.org/10.5194/acp-14-577-2014, https://doi.org/10.5194/acp-14-577-2014, 2014
B. W. LaFranchi, G. Pétron, J. B. Miller, S. J. Lehman, A. E. Andrews, E. J. Dlugokencky, B. Hall, B. R. Miller, S. A. Montzka, W. Neff, P. C. Novelli, C. Sweeney, J. C. Turnbull, D. E. Wolfe, P. P. Tans, K. R. Gurney, and T. P. Guilderson
Atmos. Chem. Phys., 13, 11101–11120, https://doi.org/10.5194/acp-13-11101-2013, https://doi.org/10.5194/acp-13-11101-2013, 2013
S. Basu, S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. Langenfelds, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy
Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, https://doi.org/10.5194/acp-13-8695-2013, 2013
V. V. Petrenko, P. Martinerie, P. Novelli, D. M. Etheridge, I. Levin, Z. Wang, T. Blunier, J. Chappellaz, J. Kaiser, P. Lang, L. P. Steele, S. Hammer, J. Mak, R. L. Langenfelds, J. Schwander, J. P. Severinghaus, E. Witrant, G. Petron, M. O. Battle, G. Forster, W. T. Sturges, J.-F. Lamarque, K. Steffen, and J. W. C. White
Atmos. Chem. Phys., 13, 7567–7585, https://doi.org/10.5194/acp-13-7567-2013, https://doi.org/10.5194/acp-13-7567-2013, 2013
I. T. van der Laan-Luijkx, S. van der Laan, C. Uglietti, M. F. Schibig, R. E. M. Neubert, H. A. J. Meijer, W. A. Brand, A. Jordan, J. M. Richter, M. Rothe, and M. C. Leuenberger
Atmos. Meas. Tech., 6, 1805–1815, https://doi.org/10.5194/amt-6-1805-2013, https://doi.org/10.5194/amt-6-1805-2013, 2013
A. Fraser, P. I. Palmer, L. Feng, H. Boesch, A. Cogan, R. Parker, E. J. Dlugokencky, P. J. Fraser, P. B. Krummel, R. L. Langenfelds, S. O'Doherty, R. G. Prinn, L. P. Steele, M. van der Schoot, and R. F. Weiss
Atmos. Chem. Phys., 13, 5697–5713, https://doi.org/10.5194/acp-13-5697-2013, https://doi.org/10.5194/acp-13-5697-2013, 2013
S. Hammer, G. Konrad, A. T. Vermeulen, O. Laurent, M. Delmotte, A. Jordan, L. Hazan, S. Conil, and I. Levin
Atmos. Meas. Tech., 6, 1201–1216, https://doi.org/10.5194/amt-6-1201-2013, https://doi.org/10.5194/amt-6-1201-2013, 2013
C. M. Trudinger, I. G. Enting, P. J. Rayner, D. M. Etheridge, C. Buizert, M. Rubino, P. B. Krummel, and T. Blunier
Atmos. Chem. Phys., 13, 1485–1510, https://doi.org/10.5194/acp-13-1485-2013, https://doi.org/10.5194/acp-13-1485-2013, 2013
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
An Algorithm for Automatic Fitting and Formula Assignment in Atmospheric Mass Spectra
Application of fuzzy c-means clustering for analysis of chemical ionization mass spectra: insights into the gas phase chemistry of NO3-initiated oxidation of isoprene
Wall loss of semi-volatile organic compounds in a Teflon bag chamber for the temperature range of 262–298 K: mechanistic insight on temperature dependence
Obtaining accurate non-methane hydrocarbon data for ambient air in urban areas: comparison of non-methane hydrocarbon data between indirect and direct methods
Reconstruction of high-frequency methane atmospheric concentration peaks from measurements using metal oxide low-cost sensors
Cavity ring-down spectroscopy of water vapor in the deep-blue region
Development and application of a supervised pattern recognition algorithm for identification of fuel-specific emissions profiles
Orbitool: a software tool for analyzing online Orbitrap mass spectrometry data
Dynamic infrared gas analysis from longleaf pine fuel beds burned in a wind tunnel: observation of phenol in pyrolysis and combustion phases
High-precision measurements of nitrous oxide and methane in air with cavity ring-down spectroscopy at 7.6 µm
Mapping and quantifying isomer sets of hydrocarbons ( ≥ C12) in diesel exhaust, lubricating oil and diesel fuel samples using GC × GC-ToF-MS
Measurement of alkyl and multifunctional organic nitrates by proton-transfer-reaction mass spectrometry
Uncertainty budgets of major ozone absorption cross sections used in UV remote sensing applications
New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)
High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K
High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence
Maintaining consistent traceability in high-precision isotope measurements of CO2: a way to verify atmospheric trends of δ13C and δ18O
On the interference of Kr during carbon isotope analysis of methane using continuous-flow combustion–isotope ratio mass spectrometry
OH clock determination by proton transfer reaction mass spectrometry at an environmental chamber
Water isotopic ratios from a continuously melted ice core sample
Valter Mickwitz, Otso Peräkylä, Frans Graeffe, Douglas Worsnop, and Mikael Ehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3047, https://doi.org/10.5194/egusphere-2024-3047, 2024
Short summary
Short summary
This work presents and evaluates an algorithm that automatically conducts the steps of fitting peaks and identifying formulas, necessary but time consuming steps for most applications of mass spectrometry within atmospheric science. The aim of the algorithm is to save researchers working on these tasks significant amounts of time, and allow them to proceed with their analysis. The work demonstrates that this algorithm can achieve the goal of speeding up analysis, and provide accurate formulas.
Rongrong Wu, Sören R. Zorn, Sungah Kang, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Meas. Tech., 17, 1811–1835, https://doi.org/10.5194/amt-17-1811-2024, https://doi.org/10.5194/amt-17-1811-2024, 2024
Short summary
Short summary
Recent advances in high-resolution time-of-flight chemical ionization mass spectrometry (CIMS) enable the detection of highly oxygenated organic molecules, which efficiently contribute to secondary organic aerosol. Here we present an application of fuzzy c-means (FCM) clustering to deconvolve CIMS data. FCM not only reduces the complexity of mass spectrometric data but also the chemical and kinetic information retrieved by clustering gives insights into the chemical processes involved.
Longkun He, Wenli Liu, Yatai Li, Jixuan Wang, Mikinori Kuwata, and Yingjun Liu
Atmos. Meas. Tech., 17, 755–764, https://doi.org/10.5194/amt-17-755-2024, https://doi.org/10.5194/amt-17-755-2024, 2024
Short summary
Short summary
We experimentally investigated vapor wall loss of n-alkanes in a Teflon chamber across a wide temperature range. Increased wall loss was observed at lower temperatures. Further analysis suggests that lower temperatures enhance partitioning of n-alkanes to the surface layer of a Teflon wall but slow their diffusion into the inner layer. The results are important for quantitative analysis of chamber experiments conducted at low temperatures, simulating wintertime or upper-tropospheric conditions.
Song Gao, Yong Yang, Xiao Tong, Linyuan Zhang, Yusen Duan, Guigang Tang, Qiang Wang, Changqing Lin, Qingyan Fu, Lipeng Liu, and Lingning Meng
Atmos. Meas. Tech., 16, 5709–5723, https://doi.org/10.5194/amt-16-5709-2023, https://doi.org/10.5194/amt-16-5709-2023, 2023
Short summary
Short summary
We optimized and conducted an experimental program for the real-time monitoring of non-methane hydrocarbon instruments using the direct method. Changing the enrichment and specially designed columns further improved the test effect. The results correct the measurement errors that have prevailed for many years and can lay a foundation for the evaluation of volatile organic compounds in the regional ambient air and provide direction for the measurement of low-concentration ambient air pollutants.
Rodrigo Andres Rivera Martinez, Diego Santaren, Olivier Laurent, Gregoire Broquet, Ford Cropley, Cécile Mallet, Michel Ramonet, Adil Shah, Leonard Rivier, Caroline Bouchet, Catherine Juery, Olivier Duclaux, and Philippe Ciais
Atmos. Meas. Tech., 16, 2209–2235, https://doi.org/10.5194/amt-16-2209-2023, https://doi.org/10.5194/amt-16-2209-2023, 2023
Short summary
Short summary
A network of low-cost sensors is a good alternative to improve the detection of fugitive CH4 emissions. We present the results of four tests conducted with two types of Figaro sensors that were assembled on four chambers in a laboratory experiment: a comparison of five models to reconstruct the CH4 signal, a strategy to reduce the training set size, a detection of age effects in the sensors and a test of the capability to transfer a model between chambers for the same type of sensor.
Qing-Ying Yang, Eamon K. Conway, Hui Liang, Iouli E. Gordon, Yan Tan, and Shui-Ming Hu
Atmos. Meas. Tech., 15, 4463–4472, https://doi.org/10.5194/amt-15-4463-2022, https://doi.org/10.5194/amt-15-4463-2022, 2022
Short summary
Short summary
Water vapor absorption in the near-UV region is essential to describe the energy budget of Earth; however, there is little spectroscopic information available. And accurate near-UV water absorption is also required in both ground-based observations and satellite missions for trace gas species. Here, we provide the high-resolution spectra of water vapor around 415 nm measured with cavity ring-down spectroscopy. These absorption lines have never been experimentally verified before.
Christos Stamatis and Kelley Claire Barsanti
Atmos. Meas. Tech., 15, 2591–2606, https://doi.org/10.5194/amt-15-2591-2022, https://doi.org/10.5194/amt-15-2591-2022, 2022
Short summary
Short summary
Building on the identification of hundreds of gas-phase chemicals in smoke samples from laboratory and field studies, an algorithm was developed that successfully identified chemical patterns that were consistent among types of trees and unique between types of trees that are common fuels in western coniferous forests. The algorithm is a promising approach for selecting chemical speciation profiles for air quality modeling using a highly reduced suite of measured compounds.
Runlong Cai, Yihao Li, Yohann Clément, Dandan Li, Clément Dubois, Marlène Fabre, Laurence Besson, Sebastien Perrier, Christian George, Mikael Ehn, Cheng Huang, Ping Yi, Yingge Ma, and Matthieu Riva
Atmos. Meas. Tech., 14, 2377–2387, https://doi.org/10.5194/amt-14-2377-2021, https://doi.org/10.5194/amt-14-2377-2021, 2021
Short summary
Short summary
Orbitool is an open-source software tool, mainly coded in Python, with a graphical user interface (GUI), specifically developed to facilitate the analysis of online Orbitrap mass spectrometric data. It is notably optimized for long-term atmospheric measurements and laboratory studies.
Catherine A. Banach, Ashley M. Bradley, Russell G. Tonkyn, Olivia N. Williams, Joey Chong, David R. Weise, Tanya L. Myers, and Timothy J. Johnson
Atmos. Meas. Tech., 14, 2359–2376, https://doi.org/10.5194/amt-14-2359-2021, https://doi.org/10.5194/amt-14-2359-2021, 2021
Short summary
Short summary
We have developed a novel method to identify and characterize the gases emitted in biomass burning fires in a time-resolved fashion. Using time-resolved infrared spectroscopy combined with time-resolved thermal imaging in a wind tunnel, we were able to capture the gas-phase dynamics of the burning of plants native to the southeastern United States.
Jing Tang, Bincheng Li, and Jing Wang
Atmos. Meas. Tech., 12, 2851–2861, https://doi.org/10.5194/amt-12-2851-2019, https://doi.org/10.5194/amt-12-2851-2019, 2019
Short summary
Short summary
A high-sensitivity CH4 and N2O sensor based on mid-IR (7.6 µm) cavity ring-down spectroscopy was developed. The effect of temperature fluctuation on measurement sensitivity was analyzed and corrected, and detection limits of 5 pptv for CH4 and 9 pptv for N2O were experimentally achieved. Separate and continuous measurements of CH4 and N2O concentrations of indoor and outdoor air at different locations showed the spatial and temporal concentration variations of CH4 and N2O in air.
Mohammed S. Alam, Soheil Zeraati-Rezaei, Zhirong Liang, Christopher Stark, Hongming Xu, A. Rob MacKenzie, and Roy M. Harrison
Atmos. Meas. Tech., 11, 3047–3058, https://doi.org/10.5194/amt-11-3047-2018, https://doi.org/10.5194/amt-11-3047-2018, 2018
Short summary
Short summary
Diesel fuel, lubricating oil and diesel exhaust emissions all contain a very complex mixture of chemical compounds with diverse molecular structures. The GC × GC-ToF-MS analytical method is a very powerful way of separating and identifying those compounds. This paper describes the allocation of compounds into groups with similar molecular structures and chemical properties, which facilitates the intercomparison of very complex mixtures such as are found in diesel fuel, oil and emissions.
Marius Duncianu, Marc David, Sakthivel Kartigueyane, Manuela Cirtog, Jean-François Doussin, and Benedicte Picquet-Varrault
Atmos. Meas. Tech., 10, 1445–1463, https://doi.org/10.5194/amt-10-1445-2017, https://doi.org/10.5194/amt-10-1445-2017, 2017
Short summary
Short summary
A commercial PTR-ToF-MS has been optimized in order to allow the measurement of individual organic nitrates in the atmosphere. This has been accomplished by shifting the distribution between different ionizing analytes. The proposed approach has been proved to be appropriate for the online detection of individual alkyl nitrates and functionalized nitrates.
Mark Weber, Victor Gorshelev, and Anna Serdyuchenko
Atmos. Meas. Tech., 9, 4459–4470, https://doi.org/10.5194/amt-9-4459-2016, https://doi.org/10.5194/amt-9-4459-2016, 2016
Short summary
Short summary
Ozone absorption cross sections measured in the laboratory using spectroscopic means can be a major source of uncertainty in atmospheric ozone retrievals. In this paper we assess the overall uncertainty in three published UV ozone cross-section datasets that are most popular in the remote sensing community. The overall uncertainties were estimated using Monte Carlo simulations. They are important for traceability of atmospheric ozone measuring instruments to common metrological standards.
Jeremy J. Harrison
Atmos. Meas. Tech., 9, 2593–2601, https://doi.org/10.5194/amt-9-2593-2016, https://doi.org/10.5194/amt-9-2593-2016, 2016
Short summary
Short summary
Using infrared sounders on satellite platforms to monitor concentrations of atmospheric HCFC-22, a stratospheric-ozone-depleting molecule which is still increasing in the atmosphere, crucially requires accurate laboratory spectroscopic data. This manuscript describes a new high-resolution infrared absorption cross-section data set for remote-sensing purposes; this improves upon the one currently available in the HITRAN and GEISA databases.
V. Gorshelev, A. Serdyuchenko, M. Weber, W. Chehade, and J. P. Burrows
Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, https://doi.org/10.5194/amt-7-609-2014, 2014
A. Serdyuchenko, V. Gorshelev, M. Weber, W. Chehade, and J. P. Burrows
Atmos. Meas. Tech., 7, 625–636, https://doi.org/10.5194/amt-7-625-2014, https://doi.org/10.5194/amt-7-625-2014, 2014
L. Huang, A. Chivulescu, D. Ernst, W. Zhang, A.-L. Norman, and Y.-S. Lee
Atmos. Meas. Tech., 6, 1685–1705, https://doi.org/10.5194/amt-6-1685-2013, https://doi.org/10.5194/amt-6-1685-2013, 2013
J. Schmitt, B. Seth, M. Bock, C. van der Veen, L. Möller, C. J. Sapart, M. Prokopiou, T. Sowers, T. Röckmann, and H. Fischer
Atmos. Meas. Tech., 6, 1425–1445, https://doi.org/10.5194/amt-6-1425-2013, https://doi.org/10.5194/amt-6-1425-2013, 2013
P. Barmet, J. Dommen, P. F. DeCarlo, T. Tritscher, A. P. Praplan, S. M. Platt, A. S. H. Prévôt, N. M. Donahue, and U. Baltensperger
Atmos. Meas. Tech., 5, 647–656, https://doi.org/10.5194/amt-5-647-2012, https://doi.org/10.5194/amt-5-647-2012, 2012
V. Gkinis, T. J. Popp, T. Blunier, M. Bigler, S. Schüpbach, E. Kettner, and S. J. Johnsen
Atmos. Meas. Tech., 4, 2531–2542, https://doi.org/10.5194/amt-4-2531-2011, https://doi.org/10.5194/amt-4-2531-2011, 2011
Cited articles
Bertagni, M. B., Pacala, S. W., Paulot, F., and Porporato, A.: Risk of the hydrogen economy for atmospheric methane, Nat. Commun., 13, 7706, https://doi.org/10.1038/s41467-022-35419-7, 2022.
Brito J., Wurm, F., Yáñez-Serrano, A. M., de Assunção, J. V., Godoy, J. M., and Artaxo, P.: Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in São Paulo, Brazil, Environ. Sci. Technol., 49, 11381–11387, https://doi.org/10.1021/acs.est.5b03281, 2015.
Ciais P., Tans, P. P., Trolier, M., White, J. W. C., and Francey, R. J.: A Large Northern Hemisphere Terrestrial CO2 Sink Indicated by the 13C/12C Ratio of Atmospheric CO2, Science, 269, 1098–1102, https://doi.org/10.1126/science.269.5227.1098, 1995.
Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A., and Zhang, N.: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network, J. Geophys. Res., 99, 22831–22855, https://doi.org/10.1029/94JD01951, 1994.
Cooper O. R., Schultz M. G., Schröder S., Chang, K.-L., Gaudel, A., Benítez, G. C., Cuevas, E., Fröhlich, M., Galbally, I. E., Molloy, S., Kubistin, D., Lu, X., McClure-Begley, A., Nédélec, P., O'Brien, J., Oltmans, S J., Petropavlovskikh, I., Ries, L., Senik, I., Sjöberg, K., Solberg, S., Spain, G. T., Spangl, W., Steinbacher, M., Tarasick, D., Thouret, V., and Xu, X.: Multi-decadal surface ozone trends at globally distributed remote locations, Elem. Sci. Anth., 8, 23, https://doi.org/10.1525/elementa.420, 2020.
de Kleijne, K., de Coninck, H., van Zelm, R., Huijbregts, M. A., and Hanssen, S. V.: The many greenhouse gas footprints of green hydrogen, Sustainable Energy Fuels, 6, 4383–4387, https://doi.org/10.1039/D2SE00444E, 2022.
Derwent, R. G., Simmonds, P. G., O'Doherty, S., Manning, A. J., and Spain, T. G.: High-frequency, continuous hydrogen observations at Mace Head, Ireland from 1994 to 2022: Baselines, pollution events and “missing” sources, Atmos. Environ., 312, 120029, https://doi.org/10.1016/j.atmosenv.2023.120029, 2023.
Dlugokencky, E. J., Steele, L. P., Lang, P. M., and Masarie, K. A.: The growth rate and distribution of atmospheric methane, J. Geophys. Res., 99, 17021–17043, https://doi.org/10.1029/94JD01245, 1994.
Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller, J. B., and Gatti, L. V.: Observational constraints on recent increases in the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803, https://doi.org/10.1029/2009GL039780, 2009.
Field, R. D., van der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., and Worden, H.: Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought, P. Natl. Acad. Sci. USA, 113, 9204–9209, https://doi.org/10.1073/pnas.1524888113, 2016.
Francey, R. J., Steele, L. P., Langenfelds, R. L., and Pak, B. C.: High Precision Long-Term Monitoring of Radiatively Active and Related Trace Gases at Surface Sites and from Aircraft in the Southern Hemisphere Atmosphere, J. Atmos. Sci., 279–285, https://doi.org/10.1175/1520-0469(1999)056<0279:HPLTMO>2.0.CO;2, 1999.
Francey, R. J., Steele, L. P., Spencer, D. A., Langenfelds, R. L., Law, R. M., Krummel, P. B., Fraser, P. J., Etheridge, D. M., Derek, N., Coram, S. A., Cooper, L. N., Allison, C. E., Porter, L., and Baly, S.: The CSIRO (Australia) measurement of greenhouse gases in the global atmosphere, in: Report of the eleventh WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, 25–28 September 2001, Tokyo, Japan, World Meteorological Organization, 97–106, http://hdl.handle.net/102.100.100/194315 (last access: 29 December 2023), 2003.
Grant, A., Witham, C. S., Simmonds, P. G., Manning, A. J., and O'Doherty, S.: A 15 year record of high-frequency, in situ measurements of hydrogen at Mace Head, Ireland, Atmos. Chem. Phys., 10, 1203–1214, https://doi.org/10.5194/acp-10-1203-2010, 2010.
Heiskanen, J., Brümmer, C., Buchmann, N., Calfapietra, C., Chen, H., Gielen, B., Gkritzalis, T., Hammer, S., Hartman, S., Herbst, M., Janssens, I., Jordan, A., Juurola, E., Karstens, U., Kasurinen, V., Kruijt, B., Lankreijer, H., Levin, I., Linderson, M., Loustau, D., Merbold, L., Myhre, C., Papale, D., Pavelka, M., Pilegaard, K., Ramonet, M., Rebmann, C., Rinne, J., Rivier, L., Saltikoff, E., Sanders, R., Steinbacher, M., Steinhoff, T., Watson, A., Vermeulen, A., Vesala, T., Vítková, G., and Kutsch, W.: The Integrated Carbon Observation System in Europe, B. Am. Meteorol. Soc., 103, E855–E872, https://doi.org/10.1175/BAMS-D-19-0364.1, 2022.
Hydrogen Council and McKinsey & Company: Hydrogen Insights 2023, 23 pp., https://hydrogencouncil.com/wp-content/uploads/2023/12/Hydrogen-Insights-Dec-2023-Update.pdf (last access: 29 December 2023), 2023.
International Energy Agency (IEA): Global Hydrogen Review 2022, IEA, Paris, 284 pp., https://www.iea.org/reports/global-hydrogen-review-2022 (last access: 29 December 2023), 2022.
Jordan, A. and Steinberg, B.: Calibration of atmospheric hydrogen measurements, Atmos. Meas. Tech., 4, 509–521, https://doi.org/10.5194/amt-4-509-2011, 2011.
Khalil, M. A. K. and Rasmussen, R. A.: Seasonal cycles of hydrogen and carbon monoxide in the polar regions: Opposite phase relationships, Ant. J. U.S., 23, 177–178, 1989.
Khalil, M. A. K. and Rasmussen, R. A.: Global increase of atmospheric molecular hydrogen, Nature 347, 743–745, https://doi.org/10.1038/347743a0, 1990.
Kitzis, D.: Preparation and Stability of Standard Reference Air Mixtures, NOAA GML, https://gml.noaa.gov/ccl/airstandard.html (last access: 17 May 2023), 2017.
Langenfelds, R. L., Francey, R. J., Pak, B. C., Steele, L. P., Lloyd, J., Trudinger, C. M., and Allison, C. E.: Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning, Global Biogeochem. Cy., 16, 1048, https://doi.org/10.1029/2001GB001466, 2002.
Longden T., Beck, F. J., Jotzo, F., Andrews, R., and Prasad, M.: “Clean” hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen, Appl. Energ., 306, 118145, https://doi.org/10.1016/j.apenergy.2021.118145, 2022.
Masarie, K. A., Langenfelds, R. L., Allison, C. E., Conway, T. J., Dlugokencky, E. J., Francey, R. J., Novelli, P. C., Steele, L. P., Tans, P. P, Vaughn, B., and White, J. W. C.: NOAA/CSIRO Flask Air Intercomparison Experiment: A strategy for directly assessing consistency among atmospheric measurements made by independent laboratories, J. Geophys. Res., 106, 20445–20464, https://doi.org/10.1029/2000JD000023, 2001.
Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., and Elkins, J. W.: An unexpected and persistent increase in global emissions of ozone-depleting CFC-11, Nature, 557, 413–417, https://doi.org/10.1038/s41586-018-0106-2, 2018.
Novelli, P. C., Elkins, J. W., and Steele, L. P.: The Development and Evaluation of a Gravimetric Reference Scale For Measurements of Atmospheric Carbon Monoxide, J. Geophys. Res., 96, 13109–13121, https://doi.org/10.1029/91JD01108, 1991.
Novelli, P. C., Steele, L. P., and Tans, P. P.: Mixing ratios of carbon monoxide in the troposphere, J. Geophys. Res., 97, 20731–20750, https://doi.org/10.1029/92JD02010, 1992.
Novelli, P. C., Lang, P. M., Masarie, K. A., Hurst, D. F., Myers, R., and Elkins, J. W.: Molecular hydrogen in the troposphere: Global distribution and budget, J. Geophys. Res., 104, 30427–30444, https://doi.org/10.1029/1999JD900788, 1999.
Novelli, P. C., Crotwell, A. M., and Hall, B. D.: Application of Gas Chromatography with a Pulsed Discharged Helium Ionization Detector for Measurements of Molecular Hydrogen, Environ. Sci. Technol., 43, 2431–2436, https://doi.org/10.1021/es803180g, 2009.
Ocko, I. B. and Hamburg, S. P.: Climate consequences of hydrogen emissions, Atmos. Chem. Phys., 22, 9349–9368, https://doi.org/10.5194/acp-22-9349-2022, 2022.
Oltmans S. J. and Levy II, H.: Surface ozone measurements from a global network, Atmos. Environ., 28, 9–24, https://doi.org/10.1016/1352-2310(94)90019-1, 1994.
Patterson, J. D., Aydin, M., Crotwell, A. M., Pétron, G., Severinghaus, J. P., Krummel, P. B., Langenfelds, R. L., and Saltzman, E. S.: H2 in Antarctic firn air: Atmospheric reconstructions and implications for anthropogenic emissions, P. Natl. Acad. Sci. USA, 118, e2103335118, https://doi.org/10.1073/pnas.2103335118, 2021.
Patterson, J. D., Aydin, M., Crotwell, A. M., Pétron, G., Severinghaus, J. P., Krummel, P. B., Langenfelds, R. L., Petrenko, V. V., and Saltzman, E. S.: Reconstructing atmospheric H2 over the past century from bi-polar firn air records, Clim. Past, 19, 2535–2550, https://doi.org/10.5194/cp-19-2535-2023, 2023.
Paulot, F., Pétron, G., Crotwell, A. M., and Bertagni, M. B.: Reanalysis of NOAA H2 observations: implications for the H2 budget, Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, 2024.
Petetin, H., Sauvage, B., Parrington, M., Clark, H., Fontaine, A., Athier, G., Blot, R., Boulanger, D., Cousin, J.-M., Nédélec, P., and Thouret, V.: The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017, Atmos. Chem. Phys., 18, 17277–17306, https://doi.org/10.5194/acp-18-17277-2018, 2018.
Pétron, G., Frost, G., Miller, B. R, Hirsch, A. I., Montzka, S. A., Karion, A., Trainer, M., Sweeney, C., Andrews, A. E., Miller, L., Kofler, J., Bar-Ilan, A., Dlugokencky, E. J., Patrick, L., Moore Jr., C. T., Ryerson, T. B., Siso, C., Kolodzey, W., Lang, P. M., Conway, T., Novelli, P., Masarie, K., Hall, B., Guenther, D., Kitzis, D., Miller, J., Welsh, D., Wolfe, D., Neff, W., and Tans, P.: Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study, J. Geophys. Res., 117, D04304, https://doi.org/10.1029/2011JD016360, 2012.
Pétron, G., Crotwell, A., Crotwell, M., Kitzis, D., Madronich, M., Mefford, T., Moglia, E., Mund, J., Neff, D., Thoning, K., and Wolter, S.: Atmospheric Hydrogen Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 2009–2021, Version: 2023-05-25, NOAA GML CCGG Division [data set], https://doi.org/10.15138/WP0W-EZ08, 2023a.
Pétron G., Crotwell, A. M., Crotwell, M. J., Dlugokencky, E., Madronich, M., Moglia, E., Neff, D., Thoning, K., Wolter, S., and Mund, J. W.: Atmospheric Carbon Monoxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1988–2022, Version: 2023-08-28, NOAA GML CCGG Division [data set], https://doi.org/10.15138/33bv-s284, 2023b.
Price, H., Jaegle, L., Rice, A., Quay, P., Novelli, P. C., and Gammon, R.: Global budget of molecular hydrogen and its deuterium content: Constraints from ground station, cruise, and aircraft observations, J. Geophy. Res., 112, D22108, https://doi.org/10.1029/2006JD008152, 2007.
Propper, R., Wong, P., Bui, S., Austin, J., Vance, W., Alvarado, Á., Croes, B., and Luo, D.: Ambient and Emission Trends of Toxic Air Contaminants in California, Environ. Sci. Technol., 49, 11329–11339, https://doi.org/10.1021/acs.est.5b02766, 2015.
Schultz, M. G., Akimoto, H., Bottenheim, J., Buchmann, B., Galbally, I. E., Gilge, S., Helmig, D., Koide, H., Lewis, A. C., Novelli, P. C., Plass-Dülmer, C., Ryerson, T. B., Steinbacher, M., Steinbrecher, R., Tarasova, O., Tørseth, K., Thouret, V., and Zellweger, C.: The Global Atmosphere Watch reactive gases measurement network, Elem. Sci. Anth., 3, 000067, https://doi.org/10.12952/journal.elementa.000067, 2015.
Simmonds, P. G., Derwent, R. G., O'Doherty, S., Ryall, D. B., Steele, L. P., Langenfelds, R. L., Salameh, P., Wang, H. J., Dimmer, C. H., and Hudson, L. E.: Continuous high-frequency observations of hydrogen at the Mace Head baseline atmospheric monitoring station over the 1994–1998 period, J. Geophys. Res., 105, 12105–12121, https://doi.org/10.1029/2000JD900007, 2000.
Simmonds, P. G., Manning, A. J., Derwent, R. G., Ciais, P., Ramonet, M., Kazan, V., and Ryall, D.: A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events?, Atmos. Environ., 39, 2513–2517, https://doi.org/10.1016/j.atmosenv.2005.02.018, 2005.
Simpson, I. J., Andersen, M. P. S., Meinardi, S., Bruhwiler, L., Blake, N. J., Helmig, D., Sherwood Rowland, F., and Blake, D. R.: Long-term decline of global atmospheric ethane concentrations and implications for methane, Nature, 488, 490–494, https://doi.org/10.1038/nature11342, 2012.
Storm, I., Karstens, U., D'Onofrio, C., Vermeulen, A., and Peters, W.: A view of the European carbon flux landscape through the lens of the ICOS atmospheric observation network, Atmos. Chem. Phys., 23, 4993–5008, https://doi.org/10.5194/acp-23-4993-2023, 2023.
Tans, P. P., Thoning, K. W., Elliot, W. P., and Conway, T. J.: Background atmospheric CO2 patterns from weekly flask samples at Barrow, Alaska: Optimal signal recovery and error estimates, NOAA Tech. Memo. (ERL-ARL-173). Environ. Res. Lab., Boulder, Colo., 131 pp., https://www.arl.noaa.gov/documents/reports/arl-173.pdf (last access: 23 July 2024), 1989a.
Tans, P. P., Conway, T. J., and Nakazawa, T.: Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model, J. Geophys. Res., 94, 5151–5172, https://doi.org/10.1029/JD094iD04p05151, 1989b.
Thompson A. M., Witte, J. C., Oltmans, S. J., and Schmidlin, F. J.: SHADOZ – A tropical ozonesonde-radiosonde network for the atmospheric community, B. Am. Meteorol. Soc., 85, 1549–1564, http://www.jstor.org/stable/26221206 (last access: 23 July 2024), 2004.
Thoning, K.: CCG Python Curve Filtering documentation, NOAA GML, https://gml.noaa.gov/aftp/user/thoning/ccgcrv/ccgfilt.pdf (last access: 23 July 2024), 2018.
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974–1985, J. Geophys. Res., 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
van der Velde, I. R., van der Werf, G. R., Houweling, S., Maasakkers, J. D., Borsdorff, T., Landgraf, J., Tol, P., van Kempen, T. A., van Hees, R., Hoogeveen, R., Veefkind, J. P., and Aben, I.: Vast CO2 release from Australian fires in 2019–2020 constrained by satellite, Nature, 597, 366–369, https://doi.org/10.1038/s41586-021-03712-y, 2021.
von Schneidemesser, E., Monks, P. S., and Plass-Duelmer C.: Global comparison of VOC and CO observations in urban areas, Atmos. Environ., 44, 5053–5064, https://doi.org/10.1016/j.atmosenv.2010.09.010, 2010.
Warwick, N., Griffiths, P., Keeble, J., Archibald A., Pyle, J., and Shine, K.: Atmospheric implications of increased Hydrogen use, UK government's Department of Business, Energy and Industrial Strategy (BEIS) report, https://assets.publishing.service.gov.uk/media/624eca7fe90e0729f4400b99/atmospheric-implications-of-increased-hydrogen-use.pdf (last access: 18 October 2023), 2022.
Warwick, N. J., Archibald, A. T., Griffiths, P. T., Keeble, J., O'Connor, F. M., Pyle, J. A., and Shine, K. P.: Atmospheric composition and climate impacts of a future hydrogen economy, Atmos. Chem. Phys., 23, 13451–13467, https://doi.org/10.5194/acp-23-13451-2023, 2023.
Wentworth, W. E., Cai, H., and Stearns, S.: Pulsed discharge helium ionization detector universal detector for inorganic and organic compounds at the low picogram level, J. Chromatogr. A, 688, 135–152, https://doi.org/10.1016/0021-9673(94)00913-9, 1994.
World Meteorological Organization (WMO): 20th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2019), 2–6 September 2019, Jeju, Republic of Korea, WMO/GAW report 255, https://library.wmo.int/records/item/57135-20th-wmo-iaea-meeting-on-carbon-dioxide-other-greenhouse-gases-and-related-measurement-techniques-ggmt-2019 (last access: 4 December 2023), 2020.
World Meteorological Organization (WMO): Greenhouse Gas Bulletin (18): The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021, 10 pp., https://library.wmo.int/idurl/4/58743 (last access: 2 January 2024), 2022.
Worthy, D. E. J., Rauh, M. K., Huang, L., Vogel, F. R., Chivulescu, A., Masarie, K. A., Langenfelds, R. L., Krummel, P. B., Allison, C. E., Crotwell, A. M., Madronich, M., Pétron, G., Levin, I., Hammer, S., Michel, S., Ramonet, M., Schmidt, M., Jordan, A., Moossen, H., Rothe, M., Keeling, R., and Morgan, E. J.: Results of a long-term international comparison of greenhouse gas and isotope measurements at the Global Atmosphere Watch (GAW) Observatory in Alert, Nunavut, Canada, Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, 2023.
Yap, J. and McLellan B. A.: Historical Analysis of Hydrogen Economy Research, Development, and Expectations, 1972 to 2020, Environments, 10, 11, https://doi.org/10.3390/environments10010011, 2023.
Yver, C. E., Pison, I. C., Fortems-Cheiney, A., Schmidt, M., Chevallier, F., Ramonet, M., Jordan, A., Søvde, O. A., Engel, A., Fisher, R. E., Lowry, D., Nisbet, E. G., Levin, I., Hammer, S., Necki, J., Bartyzel, J., Reimann, S., Vollmer, M. K., Steinbacher, M., Aalto, T., Maione, M., Arduini, J., O'Doherty, S., Grant, A., Sturges, W. T., Forster, G. L., Lunder, C. R., Privalov, V., Paramonova, N., Werner, A., and Bousquet, P.: A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion, Atmos. Chem. Phys., 11, 3375–3392, https://doi.org/10.5194/acp-11-3375-2011, 2011.
Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J. G., Chen, Y., van der Velde, I. R., Aben, I., Chuvieco, E., Davis, S. J., Deeter, M., Hong, C., Kong, Y., Li, H., Li, H., X. Lin, X., He, K., and Zhang, Q.: Record-high CO2 emissions from boreal fires in 2021, Science, 379, 912–917, https://doi.org/10.1126/science.ade0805, 2023.
Executive editor
Although the paper is very technical, I agree with the handling editor that this is an important paper and deserves broader awareness.
Although the paper is very technical, I agree with the handling editor that this is an important...
Short summary
Hydrogen (H2) is a gas in trace amounts in the Earth’s atmosphere with indirect impacts on climate and air quality. Renewed interest in H2 as a low- or zero-carbon source of energy may lead to increased production, uses, and supply chain emissions. NOAA measurements of weekly air samples collected between 2009 and 2021 at over 50 sites in mostly remote locations are now available, and they complement other datasets to study the H2 global budget.
Hydrogen (H2) is a gas in trace amounts in the Earth’s atmosphere with indirect impacts on...