Articles | Volume 17, issue 2
https://doi.org/10.5194/amt-17-715-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-715-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Uptake behavior of polycyclic aromatic compounds during field calibrations of the XAD-based passive air sampler across seasons and locations
Yuening Li
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 Ontario, Canada
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 Ontario, Canada
Yushan Su
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 Ontario, Canada
currently at: Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Etobicoke, M9P 3V6 Ontario, Canada
Ying Duan Lei
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 Ontario, Canada
Chubashini Shunthirasingham
Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, M3H 5T4 Ontario, Canada
Zilin Zhou
Department of Chemistry, University of Toronto, 80 St George Street, Toronto, M5S 3H6 Ontario, Canada
Jonathan P. D. Abbatt
Department of Chemistry, University of Toronto, 80 St George Street, Toronto, M5S 3H6 Ontario, Canada
Hayley Hung
Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, M3H 5T4 Ontario, Canada
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, M1C 1A4 Ontario, Canada
Related authors
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Timothy A. Sipkens, Joel C. Corbin, Kerry Chen, Laura-Helena Rivellini, Jonathan Abbatt, and Jason S. Olfert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4209, https://doi.org/10.5194/egusphere-2025-4209, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Aethalometers measure black carbon mass concentrations using light attenuation through a filter capturing particles. This work compares five micro-aethalometers using known mass concentrations of laboratory-generated soot. Uncertainties were found to scale with mass concentration, and an expression is given for the uncertainty as a function of mass concentration, sampling interval, and flow rate. An open-source algorithm is provided for the reanalysis of aethalometer data.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Michael F. Link, Megan S. Claflin, Christina E. Cecelski, Ayomide A. Akande, Delaney Kilgour, Paul A. Heine, Matthew Coggon, Chelsea E. Stockwell, Andrew Jensen, Jie Yu, Han N. Huynh, Jenna C. Ditto, Carsten Warneke, William Dresser, Keighan Gemmell, Spiro Jorga, Rileigh L. Robertson, Joost de Gouw, Timothy Bertram, Jonathan P. D. Abbatt, Nadine Borduas-Dedekind, and Dustin Poppendieck
Atmos. Meas. Tech., 18, 1013–1038, https://doi.org/10.5194/amt-18-1013-2025, https://doi.org/10.5194/amt-18-1013-2025, 2025
Short summary
Short summary
Proton-transfer-reaction mass spectrometry (PTR-MS) is widely used for the measurement of volatile organic compounds (VOCs) both indoors and outdoors. An analytical challenge for PTR-MS measurements is the formation of unintended measurement interferences, product ion distributions (PIDs), that may appear in the data as VOCs of interest. We developed a method for quantifying PID formation and use interlaboratory comparison data to put quantitative constraints on PID formation.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
Rachel Y.-W. Chang, Jonathan P. D. Abbatt, Matthew C. Boyer, Jai Prakash Chaubey, and Douglas B. Collins
Atmos. Chem. Phys., 22, 8059–8071, https://doi.org/10.5194/acp-22-8059-2022, https://doi.org/10.5194/acp-22-8059-2022, 2022
Short summary
Short summary
During summer 2016, the ability of newly formed particles to turn into droplets was measured in the Canadian Arctic. Our observations suggest that these small particles were growing by the condensation of organic vapours likely coming from the surrounding open waters. These particles grew large enough that they could form cloud droplets and therefore affect the earth’s radiation budget. These results are relevant as the Arctic summer rapidly warms with climate change.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Shunyao Wang, Tengyu Liu, Jinmyung Jang, Jonathan P. D. Abbatt, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 6647–6661, https://doi.org/10.5194/acp-21-6647-2021, https://doi.org/10.5194/acp-21-6647-2021, 2021
Short summary
Short summary
Discrepancies between atmospheric modeling and field observations, especially in highly polluted cities, have highlighted the lack of understanding of sulfate formation mechanisms and kinetics. Here, we directly quantify the reactive uptake coefficient of SO2 onto organic peroxides and study the important governing factors. The SO2 uptake rate was observed to depend on RH, peroxide amount and reactivity, pH, and ionic strength, which provides a framework to better predict sulfate formation.
Franziska Köllner, Johannes Schneider, Megan D. Willis, Hannes Schulz, Daniel Kunkel, Heiko Bozem, Peter Hoor, Thomas Klimach, Frank Helleis, Julia Burkart, W. Richard Leaitch, Amir A. Aliabadi, Jonathan P. D. Abbatt, Andreas B. Herber, and Stephan Borrmann
Atmos. Chem. Phys., 21, 6509–6539, https://doi.org/10.5194/acp-21-6509-2021, https://doi.org/10.5194/acp-21-6509-2021, 2021
Short summary
Short summary
We present in situ observations of vertically resolved particle chemical composition in the summertime Arctic lower troposphere. Our analysis demonstrates the strong vertical contrast between particle properties within the boundary layer and aloft. Emissions from vegetation fires and anthropogenic sources in northern Canada, Europe, and East Asia influenced particle composition in the free troposphere. Organics detected in Arctic aerosol particles can partly be identified as dicarboxylic acids.
Mutian Ma, Laura-Hélèna Rivellini, YuXi Cui, Megan D. Willis, Rio Wilkie, Jonathan P. D. Abbatt, Manjula R. Canagaratna, Junfeng Wang, Xinlei Ge, and Alex K. Y. Lee
Atmos. Meas. Tech., 14, 2799–2812, https://doi.org/10.5194/amt-14-2799-2021, https://doi.org/10.5194/amt-14-2799-2021, 2021
Short summary
Short summary
Chemical characterization of organic coatings is important to advance our understanding of the physio-chemical properties and atmospheric processing of black carbon (BC) particles. This work develops two approaches to improve the elemental analysis of oxygenated organic coatings using a soot-particle aerosol mass spectrometer. Analyzing ambient data with the new approaches indicated that secondary organics that coated on BC were likely less oxygenated compared to those externally mixed with BC.
Cited articles
Abdul Hussain, B., Westgate, J. N., Hayward, S. J., Shunthirasingham, C., Brown, T. N., Hung, H., Lei, Y. D., and Wania, F.: Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils and atmosphere of Western Canadian mountains: The role of source proximity, precipitation, forest cover and mountain cold-trapping, Atmos. Environ. X, 1, 100004, https://doi.org/10.1016/j.aeaoa.2018.100004, 2019.
Ahad, J. M. E., Pakdel, H., Labarre, T., Cooke, C. A., Gammon, P. R., and Savard, M. M.: Isotopic analyses fingerprint sources of polycyclic aromatic compound-bearing dust in Athabasca oil sands region snowpack, Environ. Sci. Technol., 55, 5887–5897, https://doi.org/10.1021/acs.est.0c08339, 2021.
Andersson, J. T. and Achten, C.: Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes, Polycycl. Aromat. Compd., 35, 330–354, https://doi.org/10.1080/10406638.2014.991042, 2015.
Armitage, J. M., Hayward, S. J., and Wania, F.: Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM), Environ. Sci. Technol., 47, 13546–13554, https://doi.org/10.1021/es402978a, 2013.
Atkinson, D. and Curthoys, G.: The determination of heats of adsorption by gas-solid chromatography, J. Chem. Educ., 55, 564–566, https://doi.org/10.1021/ed055p564, 1978.
Atkinson, R. and Arey, J.: Mechanisms of the gas-phase reactions of aromatic hydrocarbons and PAHs with OH and NO3 radicals, Polycycl. Aromat. Compd., 27, 15–40, https://doi.org/10.1080/10406630601134243, 2007.
ATSDR (Agency for Toxic Substances Disease Registry): Toxicological profile for polycyclic aromatic hydrocarbons, US Government Printing Office, https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=122&tid=25 (last access: 1 July 2023), 1995.
Barthel, P., Thuens, S., Shunthirasingham, C., Westgate, J. N., Wania, F., and Radke, M.: Application of XAD-resin based passive air samplers to assess local (roadside) and regional patterns of persistent organic pollutants, Environ. Pollut., 166, 218–225, https://doi.org/10.1016/j.envpol.2012.03.026, 2012.
Bartkow, M. E., Hawker, D. W., Kennedy, K. E., and Müller, J. F.: Characterizing Uptake Kinetics of PAHs from the Air Using Polyethylene-Based Passive Air Samplers of Multiple Surface Area-to-Volume Ratios, Environ. Sci. Technol., 38, 2701–2706, https://doi.org/10.1021/es0348849, 2004.
Bedjanian, Y., Nguyen, M. L., and Le Bras, G.: Kinetics of the reactions of soot surface-bound polycyclic aromatic hydrocarbons with the OH radicals, Atmos. Environ., 44, 1754–1760, https://doi.org/10.1016/j.atmosenv.2010.02.007, 2010.
Berthiaume, A., Galarneau, E., and Marson, G.: Polycyclic aromatic compounds (PACs) in the Canadian environment: Sources and emissions, Environ. Pollut., 269, 116008, https://doi.org/10.1016/j.envpol.2020.116008, 2021.
Boffetta, P., Jourenkova, N., and Gustavsson, P.: Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons, Cancer Causes Control, 8, 444–472, https://doi.org/10.1023/A:1018465507029, 1997.
Bohlin-Nizzetto, P., Melymuk, L., White, K. B., Kalina, J., Madadi, V. O., Adu-Kumi, S., Prokeš, R., Přibylová, P., and Klánová, J.: Field- and model-based calibration of polyurethane foam passive air samplers in different climate regions highlights differences in sampler uptake performance, Atmos. Environ., 238, https://doi.org/10.1016/j.atmosenv.2020.117742, 2020.
Bohlin, P., Audy, O., Škrdlíková, L., Kukučka, P., Vojta, Š., Přibylová, P., Prokeš, R., Čupr, P., and Klánová, J.: Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments, Environ. Sci. Process. Impacts, 16, 2617–2626, https://doi.org/10.1039/c4em00305e, 2014a.
Bohlin, P., Audy, O., Škrdlíková, L., Kukučka, P., Přibylová, P., Prokeš, R., Vojta, Š., and Klánová, J.: Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks, Environ. Sci. Process. Impacts, 16, 433–444, https://doi.org/10.1039/C3EM00644A, 2014b.
Borrowman, C. K., Zhou, S., Burrow, T. E., and Abbatt, J. P. D.: Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds, Phys. Chem. Chem. Phys., 18, 205–212, https://doi.org/10.1039/c5cp05606c, 2016.
Boström, C. E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K., and Westerholm, R.: Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air, Environ. Health Perspect., 110, 451–488, https://doi.org/10.1289/ehp.110-1241197, 2002.
Brubaker, W. W. and Hites, R. A.: OH Reaction Kinetics of Polycyclic Aromatic Hydrocarbons and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans, J. Phys. Chem. A, 102, 915–921, https://doi.org/10.1021/jp9721199, 1998.
Chaemfa, C., Wild, E., Davison, B., Barber, J. L., and Jones, K. C.: A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants, J. Environ. Monit., 11, 1135–1139, https://doi.org/10.1039/B823016A, 2009.
Cheng, H., Deng, Z., Chakraborty, P., Liu, D., Zhang, R., Xu, Y., Luo, C., Zhang, G., and Li, J.: A comparison study of atmospheric polycyclic aromatic hydrocarbons in three Indian cities using PUF disk passive air samplers, Atmos. Environ., 73, 16–21, https://doi.org/10.1016/j.atmosenv.2013.03.001, 2013.
Cheng, I., Wen, D., Zhang, L., Wu, Z., Qiu, X., Yang, F., and Harner, T.: Deposition mapping of polycyclic aromatic compounds in the oil sands region of Alberta, Canada and linkages to ecosystem impacts, Environ. Sci. Technol., 52, 12456–12464, https://doi.org/10.1021/acs.est.8b02486, 2018.
Choi, S.-D., Shunthirasingham, C., Daly, G. L., Xiao, H., Lei, Y. D., and Wania, F.: Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads, Environ. Pollut., 157, 3199–3206, https://doi.org/10.1016/j.envpol.2009.05.032, 2009.
Daly, G. L., Lei, Y. D., Castillo, L. E., Muir, D. C. G., and Wania, F.: Polycyclic aromatic hydrocarbons in Costa Rican air and soil: A tropical/temperate comparison, Atmos. Environ., 41, 7339–7350, https://doi.org/10.1016/j.atmosenv.2007.05.014, 2007.
Domínguez-Morueco, N., Augusto, S., Trabalón, L., Pocurull, E., Borrull, F., Schuhmacher, M., Domingo, J. L., and Nadal, M.: Monitoring PAHs in the petrochemical area of Tarragona County, Spain: comparing passive air samplers with lichen transplants, Environ. Sci. Pollut. Res., 24, 11890–11900, https://doi.org/10.1007/s11356-015-5612-2, 2017.
Ellickson, K. M., McMahon, C. M., Herbrandson, C., Krause, M. J., Schmitt, C. M., Lippert, C. J., and Pratt, G. C.: Analysis of polycyclic aromatic hydrocarbons (PAHs) in air using passive sampling calibrated with active measurements, Environ. Pollut., 231, 487–496, https://doi.org/10.1016/j.envpol.2017.08.049, 2017.
Environment Canada and Health Canada: Canadian Environmental Protection Act Polycyclic Aromatic Hydrocarbons-Priority Substances List Assessment Report, Ottawa, Ontario, 1–68, ISBN 0-662-22209-1, 1994.
Esteve, W., Budzinski, H., and Villenave, E.: Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles, Part 1: PAHs adsorbed on 1–2 µm calibrated graphite particles, Atmos. Environ., 38, 6063–6072, https://doi.org/10.1016/j.atmosenv.2004.05.059, 2004.
Esteve, W., Budzinski, H., and Villenave, E.: Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a, Atmos. Environ., 40, 201–211, https://doi.org/10.1016/j.atmosenv.2005.07.053, 2006.
Ghosal, D., Ghosh, S., Dutta, T. K., and Ahn, Y.: Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review, Front. Microbiol., 7, 1369, https://doi.org/10.3389/fmicb.2016.01369, 2016.
Golzadeh, N., Barst, B. D., Baker, J. M., Auger, J. C., and McKinney, M. A.: Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstone Cree Nation in Alberta, Canada, Environ. Pollut., 275, 116625, https://doi.org/10.1016/j.envpol.2021.116625, 2021.
Goss, K. U.: Adsorption of VOCs from the gas phase to different minerals and a mineral mixture, Environ. Sci. Technol., 30, 2135–2142, https://doi.org/10.1021/es950508f, 1996.
Grosjean, D., Fung, K., and Harrison, J.: Interactions of polycyclic aromatic hydrocarbons with atmospheric pollutants, Environ. Sci. Technol., 17, 673–679, https://doi.org/10.1021/es00117a010, 1983.
Grung, M., Næs, K., Fogelberg, O., Nilsen, A. J., Brack, W., Lübcke-von Varel, U., and Thomas, K. V: Effects-directed analysis of sediments from polluted marine sites in Norway, J. Toxicol. Env. Health, 74, 439–454, https://doi.org/10.1080/15287394.2011.550555, 2011.
Harner, T., Su, K., Genualdi, S., Karpowicz, J., Ahrens, L., Mihele, C., Schuster, J., Charland, J.-P. P., and Narayan, J.: Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs), Atmos. Environ., 75, 123–128, https://doi.org/10.1016/j.atmosenv.2013.04.012, 2013.
Harner, T., Rauert, C., Muir, D., Schuster, J. K., Hsu, Y.-M., Zhang, L., Marson, G., Watson, J. G., Ahad, J., and Cho, S.: Air synthesis review: polycyclic aromatic compounds in the oil sands region, Environ. Rev., 26, 430–468, https://doi.org/10.1139/er-2018-0039, 2018.
Hawthorne, S. B., Miller, D. J., and Kreitinger, J. P.: Measurement of total polycyclic aromatic hydrocarbon concentrations in sediments and toxic units used for estimating risk to benthic invertebrates at manufactured gas plant sites, Environ. Toxicol. Chem., 25, 287–296, https://doi.org/10.1897/05-111R.1, 2006.
Hayward, S. J., Lei, Y. D., and Wania, F.: Sorption of a diverse set of organic chemical vapors onto XAD-2 resin: Measurement, prediction and implications for air sampling, Atmos. Environ., 45, 296–302, https://doi.org/10.1016/j.atmosenv.2010.10.028, 2011.
Holme, J. A., Valen, H., Brinchmann, B. C., Vist, G. E., Grimsrud, T. K., Becher, R., Holme, A. M., Øvrevik, J., and Alexander, J.: Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE), Toxicology, 473, 153206, https://doi.org/10.1016/j.tox.2022.153206, 2022.
Holt, E., Bohlin-Nizzetto, P., Borůvková, J., Harner, T., Kalina, J., Melymuk, L., and Klánová, J.: Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations, Environ. Pollut., 220, 1100–1111, https://doi.org/10.1016/j.envpol.2016.11.030, 2017.
Jariyasopit, N., Liu, Y., Liggio, J., and Harner, T.: Stability of polycyclic aromatic compounds in polyurethane foam-type passive air samplers upon O3 exposure, Atmos. Environ., 120, 200–204, https://doi.org/10.1016/j.atmosenv.2015.08.088, 2015.
Jariyasopit, N., Zhang, Y., Martin, J. W., and Harner, T.: Comparison of polycyclic aromatic compounds in air measured by conventional passive air samplers and passive dry deposition samplers and contributions from petcoke and oil sands ore, Atmos. Chem. Phys., 18, 9161–9171, https://doi.org/10.5194/acp-18-9161-2018, 2018.
Jariyasopit, N., Tung, P., Su, K., Halappanavar, S., Evans, G. J., Su, Y., Khoomrung, S., and Harner, T.: Polycyclic aromatic compounds in urban air and associated inhalation cancer risks: A case study targeting distinct source sectors, Environ. Pollut., 252, 1882–1891, https://doi.org/10.1016/j.envpol.2019.06.015, 2019.
Jariyasopit, N., Harner, T., Shin, C., and Park, R.: The effects of plume episodes on PAC profiles in the Athabasca oil sands region, Environ. Pollut., 282, 117014, https://doi.org/10.1016/j.envpol.2021.117014, 2021.
Kaisarevic, S., Varel, U. L., Orcic, D., Streck, G., Schulze, T., Pogrmic, K., Teodorovic, I., Brack, W., and Kovacevic, R.: Effect-directed analysis of contaminated sediment from the wastewater canal in Pancevo industrial area, Serbia, Chemosphere, 77, 907–913, https://doi.org/10.1016/j.chemosphere.2009.08.042, 2009.
Kasumba, J. and Holmén, B. A.: Heterogeneous ozonation reactions of PAHs and fatty acid methyl esters in biodiesel particulate matter, Atmos. Environ., 175, 15–24, https://doi.org/10.1016/j.atmosenv.2017.11.051, 2018.
Kim, K. H., Jahan, S. A., Kabir, E., and Brown, R. J. C.: A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int., 60, 71–80, https://doi.org/10.1016/j.envint.2013.07.019, 2013.
Lévy, M., Al-Alam, J., Ridacker, C., Massemin, S., and Millet, M.: Use of XAD®-2 passive air samplers for monitoring environmental trends of PAHs, PCBs and pesticides in three different sites in Strasbourg and its vicinity (east of France), Atmos. Environ., 195, 12–23, https://doi.org/10.1016/j.atmosenv.2018.09.052, 2018.
Lewis, R. G. and Coutant, R. W.: Determination of phase-distributed polycyclic aromatic hydrocarbons in air by grease-coated denuders, in: Gas and Particle Phase Measurements of Atmospheric Organic Compounds, CRC Press, 201–231, ISBN 90-5699-647-9, 2020.
Li, Y. and Wania, F.: Partitioning between polyurethane foam and the gas phase: Data compilation, uncertainty estimation and implications for air sampling, Environ. Sci. Process. Impacts, 23, 723–734, https://doi.org/10.1039/d1em00036e, 2021.
Li, Y., Armitage, J. M., and Wania, F.: Graphical tools for the planning and interpretation of polyurethane foam based passive air sampling campaigns, Environ. Sci. Process. Impacts, 24, 414–425, https://doi.org/10.1039/D1EM00559F, 2022.
Li, Y., Zhan, F., Lei, Y. D., Shunthirasingham, C., Hung, H., and Wania, F.: Field calibration and PAS-SIM model evaluation of the XAD-based passive air samplers for semi-volatile organic compounds, Environ. Sci. Technol., 57, 9224–9233, https://doi.org/10.1021/acs.est.3c00809, 2023a.
Li, Y., Zhan, F., Shunthirasingham, C., Lei, Y. D., Hung, H., and Wania, F.: Unbiased passive sampling of all polychlorinated biphenyls congeners from air, Environ. Sci. Technol. Lett., 10, 565–572, https://doi.org/10.1021/acs.estlett.3c00271, 2023b.
Lima, A. L. C., Farrington, J. W., and Reddy, C. M.: Combustion-derived polycyclic aromatic hydrocarbons in the environment-a review, Environ. Forensics, 6, 109–131, https://doi.org/10.1080/15275920590952739, 2005.
Liu, Y. N., Tao, S., Dou, H., Zhang, T. W., Zhang, X. L., and Dawson, R.: Exposure of traffic police to Polycyclic aromatic hydrocarbons in Beijing, China, Chemosphere, 66, 1922–1928, https://doi.org/10.1016/j.chemosphere.2006.07.076, 2007.
Mahoney, C., Montgomery, J., Connor, S., and Cobbaert, D.: Oil sands wetland ecosystem monitoring program indicators in Alberta, Canada: Transitioning from pilot to long-term monitoring, Water, 15, 1914, https://doi.org/10.3390/w15101914, 2023.
Masclet, P., Hoyau, V., Jaffrezo, J. L., and Cachier, H.: Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland. Part I: superficial snow, Atmos. Environ., 34, 3195–3207, https://doi.org/10.1016/S1352-2310(99)00196-X, 2000.
Meierdierks, J., Zarfl, C., Beckingham, B., and Grathwohl, P.: Unique calibration of passive air sampling for field monitoring of PAHs with polyethylene thin films across seasons and locations, Environ. Sci. Atmos., 1, 253–266, https://doi.org/10.1039/D0EA00022A, 2021.
Melymuk, L., Robson, M., Helm, P. A., and Diamond, M. L.: Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air, Atmos. Environ., 45, 1867–1875, https://doi.org/10.1016/j.atmosenv.2011.01.011, 2011.
Melymuk, L., Bohlin-Nizzetto, P., Prokeš, R., Kukučka, P., Přibylová, P., Vojta, Š., Kohoutek, J., Lammel, G., and Klánová, J.: Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling, Atmos. Environ., 167, 553–565, https://doi.org/10.1016/j.atmosenv.2017.08.038, 2017.
Moradi, M., Hung, H., Li, J., Park, R., Shin, C., Alexandrou, N., Iqbal, M. A., Takhar, M., Chan, A., and Brook, J. R.: Assessment of alkylated and unsubstituted polycyclic aromatic hydrocarbons in air in urban and semi-urban areas in Toronto, Canada, Environ. Sci. Technol., 56, 2959–2967, https://doi.org/10.1021/acs.est.1c04299, 2022.
Moradi, M., Eng, A., Staebler, R., and Harner, T.: Atmospheric emissions estimation of polycyclic aromatic compounds from an oil sands tailings pond using passive air samplers, Chemosphere, 345, 140423, https://doi.org/10.1016/j.chemosphere.2023.140423, 2023.
Muir, D. C. G. and Galarneau, E.: Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change, Environ. Pollut., 273, 116425, https://doi.org/10.1016/j.envpol.2021.116425, 2021.
Nikolaou, K., Masclet, P., and Mouvier, G.: Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere — A critical review, Sci. Total Environ., 32, 103–132, https://doi.org/10.1016/0048-9697(84)90125-6, 1984.
Nolan, R. H., Anderson, L. O., Poulter, B., and Varner, J. M.: Increasing threat of wildfires: the year 2020 in perspective: A Global Ecology and Biogeography special issue, Glob. Ecol. Biogeogr., 31, 1898–1905, https://doi.org/10.1111/geb.13588, 2022.
Pcchillips, D. H., Grover, P. L., and Sims, P.: A quantitative determination of the covalent binding of a series of polycylic hydrocarbons to dna in mouse skin, Int. J. Cancer, 23, 201–208, https://doi.org/10.1002/ijc.2910230211, 1979.
Pitts, J. N., Lokensgard, D. M., Ripley, P. S., Van Cauwenberghe, K. A., Van Vaeck, L., Shaffer, S. D., Thill, A. J., and Belser, W. L.: “Atmospheric” Epoxidation of benzo[a]pyrene by ozone: Formation of the metabolite benzo[a]pyrene-4,5-oxide, Science, 210, 1347–1349, https://doi.org/10.1126/science.210.4476.1347, 1980.
Pozo, K., Estellano, V. H., Harner, T., Diaz-Robles, L., Cereceda-Balic, F., Etcharren, P., Pozo, K., Vidal, V., Guerrero, F., and Vergara-Fernández, A.: Assessing polycyclic aromatic hydrocarbons (PAHs) using passive air sampling in the atmosphere of one of the most wood-smoke-polluted cities in Chile: The case study of Temuco, Chemosphere, 134, 475–481, https://doi.org/10.1016/j.chemosphere.2015.04.077, 2015.
United Nations Environment Programme: Polycyclic Aromatic Hydrocarbons (PAHs) – Assessment Report on Issues of Concern, 1–2, https://wedocs.unep.org/20.500.11822/41460 (last access: 20 September 2023), 2020.
Rauert, C., Harner, T., Ahad, J. M. E., and Percy, K. E.: Using tree cores to evaluate historic atmospheric concentrations and trends of polycyclic aromatic compounds in the Oil Sands region of Alberta, Canada, Sci. Total Environ., 739, 139996, https://doi.org/10.1016/j.scitotenv.2020.139996, 2020.
Ravindra, K., Wauters, E., and Van Grieken, R.: Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses, Sci. Total Environ., 396, 100–110, https://doi.org/10.1016/j.scitotenv.2008.02.018, 2008.
Sarma, S. N., Blais, J. M., and Chan, H. M.: Neurotoxicity of alkylated polycyclic aromatic compounds in human neuroblastoma cells, J. Toxicol. Env. Health, 80, 285–300, https://doi.org/10.1080/15287394.2017.1314840, 2017.
Schrlau, J. E., Geiser, L., Hageman, K. J., Landers, D. H., and Simonich, S. M.: Comparison of lichen, conifer needles, passive air sampling devices, and snowpack as passive sampling media to measure semi-volatile organic compounds in remote atmospheres, Environ. Sci. Technol., 45, 10354–10361, https://doi.org/10.1021/es202418f, 2011.
Schummer, C., Appenzeller, B. M., and Millet, M.: Monitoring of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of southern Luxembourg using XAD-2 resin-based passive samplers, Environ. Sci. Pollut. Res., 21, 2098–2107, https://doi.org/10.1007/s11356-013-2106-y, 2014.
Shen, G., Tao, S., Wei, S., Zhang, Y., Wang, R., Wang, B., Li, W., Shen, H., Huang, Y., Yang, Y., Wang, W., Wang, X., and Simonich, S. L. M.: Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion, Environ. Sci. Technol., 46, 4666–4672, https://doi.org/10.1021/es300144m, 2012.
Shunthirasingham, C., Barra, R., Mendoza, G., Montory, M., Oyiliagu, C. E., Lei, Y. D., and Wania, F.: Spatial variability of atmospheric semivolatile organic compounds in Chile, Atmos. Environ., 45, 303–309, https://doi.org/10.1016/j.atmosenv.2010.10.027, 2011.
Su, Y., Lei, Y. D., Wania, F., Shoeib, M., and Harner, T.: Regressing gas/particle partitioning data for polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 40, 3558–3564, https://doi.org/10.1021/es052496w, 2006.
Su, Y., Wania, F., Harner, T., and Lei, Y. D.: Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest, Environ. Sci. Technol., 41, 534–540, https://doi.org/10.1021/es0622047, 2007a.
Su, Y., Wania, F., Ying, D. L., Harner, T., and Shoeib, M.: Temperature dependence of the air concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in a forest and a clearing, Environ. Sci. Technol., 41, 4655–4661, https://doi.org/10.1021/es070334p, 2007b.
Terzi, E. and Samara, C.: Gas-particle partitioning of polycyclic aromatic hydrocarbons in urban, adjacent coastal, and continental background sites of western Greece, Environ. Sci. Technol., 38, 4973–4978, https://doi.org/10.1021/es040042d, 2004.
Tokiwa, H., Nakagawa, R., Morita, K., and Ohnishi, Y.: Mutagenicity of nitro derivatives induced by exposure of aromatic compounds to nitrogen dioxide, Mutat. Res. Mutagen. Relat. Subj., 85, 195–205, https://doi.org/10.1016/0165-1161(81)90036-4, 1981.
Tromp, P. C., Beeltje, H., Okeme, J. O., Vermeulen, R., Pronk, A., and Diamond, M. L.: Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design, Chemosphere, 227, 435–443, https://doi.org/10.1016/j.chemosphere.2019.04.043, 2019.
UFZ-LSER: database v 3.2.1 [Internet] http://www.ufz.de/lserd, last access: 13 July 2022.
Van Vaeck, L. and Van Cauwenberghe, K.: Conversion of polycyclic aromatic hydrocarbons on diesel particulate matter upon exposure to ppm levels of ozone, Atmos. Environ., 18, 323–328, https://doi.org/10.1016/0004-6981(84)90106-9, 1984.
Wakeham, S. G., Schaffner, C., and Giger, W.: Poly cyclic aromatic hydrocarbons in recent lake sediments – II. Compounds derived from biogenic precursors during early diagenesis, Geochim. Cosmochim. Ac., 44, 415–429, 1980.
Wania, F. and Shunthirasingham, C.: Passive air sampling for semi-volatile organic chemicals, Environ. Sci. Process. Impacts, 22, 1925–2002, https://doi.org/10.1039/d0em00194e, 2020.
Wania, F., Shen, L., Lei, Y. D., Teixeira, C., and Muir, D. C. G.: Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere, Environ. Sci. Technol., 37, 1352–1359, https://doi.org/10.1021/es026166c, 2003.
Westgate, J. N., Shunthirasingham, C., Oyiliagu, C. E., von Waldow, H., and Wania, F.: Three methods for quantifying proximity of air sampling sites to spatially resolved emissions of semi-volatile organic contaminants, Atmos. Environ., 44, 4380–4387, https://doi.org/10.1016/j.atmosenv.2010.07.051, 2010.
White, P. A.: The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures, Mutat. Res. Toxicol. Environ. Mutagen., 515, 85–98, https://doi.org/10.1016/S1383-5718(02)00017-7, 2002.
Wnorowski, A., Aklilu, Y., Harner, T., Schuster, J., and Charland, J.-P.: Polycyclic aromatic compounds in ambient air in the surface minable area of Athabasca oil sands in Alberta (Canada), Atmos. Environ., 244, 117897, https://doi.org/10.1016/j.atmosenv.2020.117897, 2021.
Wnorowski, A., Harnish, D., Jiang, Y., Celo, V., Dabek-Zlotorzynska, E., and Charland, J. P.: Assessment and characterization of alkylated pahs in selected sites across Canada, Atmosphere, 13, 1–16, https://doi.org/10.3390/atmos13081320, 2022.
World Health Organization: Selected Non-Heterocyclic Polycyclic Aromatic Hydrocarbons – Environmental Health Criteria 202, World Health Organization, Geneva, 1–899, ISBN 92-4-1572027, 1998.
Xu, S., Liu, W., and Tao, S.: Emission of polycyclic aromatic hydrocarbons in China, Environ. Sci. Technol., 40, 702–708, https://doi.org/10.1021/es0517062, 2006.
Zhang, X. and Wania, F.: Modeling the uptake of semivolatile organic compounds by passive air samplers: importance of mass transfer processes within the porous sampling media, Environ. Sci. Technol., 46, 9563–9570, https://doi.org/10.1021/es302334r, 2012.
Zhang, X., Tsurukawa, M., Nakano, T., Lei, Y. D., and Wania, F.: Sampling medium side resistance to uptake of semivolatile organic compounds in passive air samplers, Environ. Sci. Technol., 45, 10509–10515, https://doi.org/10.1021/es2032373, 2011.
Zhang, X., Wong, C., Lei, Y. D., and Wania, F.: Influence of sampler configuration on the uptake kinetics of a passive air sampler, Environ. Sci. Technol., 45, 397–403, https://doi.org/10.1021/es203292x, 2012.
Zhou, S., Hwang, B. C. H., Lakey, P. S. J., Zuend, A., Abbatt, J. P. D., and Shiraiwa, M.: Multiphase reactivity of polycyclic aromatic hydrocarbons is driven by phase separation and diffusion limitations, P. Natl. Acad. Sci. USA, 116, 11658–11663, https://doi.org/10.1073/pnas.1902517116, 2019.
Zhou, Z. and Abbatt, J. P. D.: Formation of gas-phase hydrogen peroxide via multiphase ozonolysis of unsaturated lipids, Environ. Sci. Technol. Lett., 8, 114–120, https://doi.org/10.1021/acs.estlett.0c00757, 2021.
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated...