Articles | Volume 18, issue 1
https://doi.org/10.5194/amt-18-241-2025
https://doi.org/10.5194/amt-18-241-2025
Research article
 | 
15 Jan 2025
Research article |  | 15 Jan 2025

Retrieving the atmospheric concentrations of carbon dioxide and methane from the European Copernicus CO2M satellite mission using artificial neural networks

Maximilian Reuter, Michael Hilker, Stefan Noël, Antonio Di Noia, Michael Weimer, Oliver Schneising, Michael Buchwitz, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang

Related authors

A study of measurement scenarios for the future CO2M mission: avoidance of detector saturation and the impact on XCO2 retrievals
Michael Weimer, Michael Hilker, Stefan Noël, Max Reuter, Michael Buchwitz, Blanca Fuentes Andrade, Rüdiger Lang, Bernd Sierk, Yasjka Meijer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3857,https://doi.org/10.5194/egusphere-2024-3857, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Automated detection of regions with persistently enhanced methane concentrations using Sentinel-5 Precursor satellite data
Steffen Vanselow, Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Hartmut Boesch, and John P. Burrows
Atmos. Chem. Phys., 24, 10441–10473, https://doi.org/10.5194/acp-24-10441-2024,https://doi.org/10.5194/acp-24-10441-2024, 2024
Short summary
Towards a sector-specific CO∕CO2 emission ratio: satellite-based observations of CO release from steel production in Germany
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, and Hartmut Bösch
Atmos. Chem. Phys., 24, 7609–7621, https://doi.org/10.5194/acp-24-7609-2024,https://doi.org/10.5194/acp-24-7609-2024, 2024
Short summary
Greenhouse gas retrievals for the CO2M mission using the FOCAL method: first performance estimates
Stefan Noël, Michael Buchwitz, Michael Hilker, Maximilian Reuter, Michael Weimer, Heinrich Bovensmann, John P. Burrows, Hartmut Bösch, and Ruediger Lang
Atmos. Meas. Tech., 17, 2317–2334, https://doi.org/10.5194/amt-17-2317-2024,https://doi.org/10.5194/amt-17-2317-2024, 2024
Short summary
A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images
Blanca Fuentes Andrade, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, Andreas Richter, Hartmut Boesch, and John P. Burrows
Atmos. Meas. Tech., 17, 1145–1173, https://doi.org/10.5194/amt-17-1145-2024,https://doi.org/10.5194/amt-17-1145-2024, 2024
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrievals of water vapour and temperature exploiting the far-infrared: application to aircraft observations in preparation for the FORUM mission
Sanjeevani Panditharatne, Helen Brindley, Caroline Cox, Richard Siddans, Jonathan Murray, Laura Warwick, and Stuart Fox
Atmos. Meas. Tech., 18, 717–735, https://doi.org/10.5194/amt-18-717-2025,https://doi.org/10.5194/amt-18-717-2025, 2025
Short summary
Global decadal measurements of methanol, ethene, ethyne, and HCN from the Cross-track Infrared Sounder
Kelley C. Wells, Dylan B. Millet, Jared F. Brewer, Vivienne H. Payne, Karen E. Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
Atmos. Meas. Tech., 18, 695–716, https://doi.org/10.5194/amt-18-695-2025,https://doi.org/10.5194/amt-18-695-2025, 2025
Short summary
Forward model emulator for atmospheric radiative transfer using Gaussian processes and cross validation
Otto Lamminpää, Jouni Susiluoto, Jonathan Hobbs, James McDuffie, Amy Braverman, and Houman Owhadi
Atmos. Meas. Tech., 18, 673–694, https://doi.org/10.5194/amt-18-673-2025,https://doi.org/10.5194/amt-18-673-2025, 2025
Short summary
Developments on a 22 GHz microwave radiometer and reprocessing of 13-year time series for water vapour studies
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
Atmos. Meas. Tech., 18, 555–567, https://doi.org/10.5194/amt-18-555-2025,https://doi.org/10.5194/amt-18-555-2025, 2025
Short summary
Optimal selection of satellite XCO2 images for urban CO2 emission monitoring
Alexandre Danjou, Grégoire Broquet, Andrew Schuh, François-Marie Bréon, and Thomas Lauvaux
Atmos. Meas. Tech., 18, 533–554, https://doi.org/10.5194/amt-18-533-2025,https://doi.org/10.5194/amt-18-533-2025, 2025
Short summary

Cited articles

Agustí-Panareda, A., McNorton, J., Balsamo, G., Baier, B. C., Bousserez, N., Boussetta, S., Brunner, D., Chevallier, F., Choulga, M., Diamantakis, M., Engelen, R., Flemming, J., Granier, C., Guevara, M., Denier van der Gon, H., Elguindi, N., Haussaire, J.-M., Jung, M., Janssens-Maenhout, G., Kivi, R., Massart, S., Papale, D., Parrington, M., Razinger, M., Sweeney, C., Vermeulen, A., and Walther, S.: Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement, Scientific Data, 9, 160, https://doi.org/10.1038/s41597-022-01228-2, 2022.​​​​​​​ a
Aires, F., Rossow, W. B., Scott, N. A., and Chédin, A.: Remote sensing from the infrared atmospheric sounding interferometer instrument 1. Compression, denoising, and first‐guess retrieval algorithms, J. Geophys. Res.-Atmos., 107, 4619, https://doi.org/10.1029/2001jd000955, 2002. a
Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M., Dlugokencky, E. J., and Goede, A.: Satellite chartography of atmospheric methane from SCIAMACHY onboard ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304, https://doi.org/10.1029/2006JD007268, 2007. a
Bishop, C. M.: Neural networks for pattern recognition, Clarendon Press, Oxford, reprinted edition, ISBN 0198538499, 1996. a
Boesch, H. and Di Noia, A.: Algorithm Theoretical Basis Document(ATBD) – ANNEX A for productsCO2_GOS_OCFP (v7.3), CH4_GOS_OCFP(v7.3) & CH4_GOS_OCPR (v9.0) (CDR6,2009-2021), C3S2_312a_Lot2_DLR – Atmosphere, Tech. rep., Copernicus Climate Change Service, http://wdc.dlr.de/C3S_312b_Lot2/Documentation/GHG/C3S2_312a_Lot2_ATBD_GHG_A_latest.pdf (last access: 10 January 2025), 2023. a, b, c
Download
Short summary
Carbon dioxide (CO2) and methane (CH4) are the main anthropogenic greenhouse gases. The European Copernicus CO2 monitoring satellite mission CO2M will provide measurements of their atmospheric concentrations, but the accuracy requirements are demanding and conventional retrieval methods computationally expensive. We present a new retrieval algorithm based on artificial neural networks that has the potential to meet the stringent requirements of the CO2M mission with minimal computational effort.
Share