Articles | Volume 18, issue 13
https://doi.org/10.5194/amt-18-3009-2025
https://doi.org/10.5194/amt-18-3009-2025
Research article
 | 
10 Jul 2025
Research article |  | 10 Jul 2025

Errors in stereoscopic retrievals of cloud top height for single-layer clouds

Jesse Loveridge and Larry Di Girolamo

Related authors

Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 2: Local optimization
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023,https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023,https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
An evaluation of the liquid cloud droplet effective radius derived from MODIS, airborne remote sensing, and in situ measurements from CAMP2Ex
Dongwei Fu, Larry Di Girolamo, Robert M. Rauber, Greg M. McFarquhar, Stephen W. Nesbitt, Jesse Loveridge, Yulan Hong, Bastiaan van Diedenhoven, Brian Cairns, Mikhail D. Alexandrov, Paul Lawson, Sarah Woods, Simone Tanelli, Sebastian Schmidt, Chris Hostetler, and Amy Jo Scarino
Atmos. Chem. Phys., 22, 8259–8285, https://doi.org/10.5194/acp-22-8259-2022,https://doi.org/10.5194/acp-22-8259-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Assessment and application of melting-layer simulations for spaceborne radars within the RTTOV-SCATT v13.1 model
Rohit Mangla, Mary Borderies, Philippe Chambon, Alan Geer, and James Hocking
Atmos. Meas. Tech., 18, 2751–2779, https://doi.org/10.5194/amt-18-2751-2025,https://doi.org/10.5194/amt-18-2751-2025, 2025
Short summary
A method to retrieve mixed-phase cloud vertical structure from airborne lidar
Ewan Crosbie, Johnathan W. Hair, Amin R. Nehrir, Richard A. Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
Atmos. Meas. Tech., 18, 2639–2658, https://doi.org/10.5194/amt-18-2639-2025,https://doi.org/10.5194/amt-18-2639-2025, 2025
Short summary
Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
Atmos. Meas. Tech., 18, 1499–1517, https://doi.org/10.5194/amt-18-1499-2025,https://doi.org/10.5194/amt-18-1499-2025, 2025
Short summary
Evaluating parallax and shadow correction methods for global horizontal irradiance retrievals from Meteosat SEVIRI
Job I. Wiltink, Hartwig Deneke, Chiel C. van Heerwaarden, and Jan Fokke Meirink
EGUsphere, https://doi.org/10.5194/egusphere-2024-4139,https://doi.org/10.5194/egusphere-2024-4139, 2025
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
Atmos. Meas. Tech., 18, 1115–1134, https://doi.org/10.5194/amt-18-1115-2025,https://doi.org/10.5194/amt-18-1115-2025, 2025
Short summary

Cited articles

Aerenson, T., Marchand, R., Chepfer, H., and Medeiros, B.: When Will MISR Detect Rising High Clouds?, J. Geophys. Res.-Atmos., 127, e2021JD035865, https://doi.org/10.1029/2021JD035865, 2022. 
Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120km), Air Force Geophys. Lab., Environ. Res. Papers, Tech. Rep. AFGL-TR-86-0110, 1986. 
Barnes, W. L., Xiong, X., Guenther, B. W., and Salomonson, V.: Development, characterization, and performance of the EOS MODIS sensors, in: Earth Observing Systems VIII, International Society for Optics and Photonics, 337–345, https://doi.org/10.1117/12.504818, 2003. 
Battaglia, A., Kollias, P., Dhillon, R., Lamer, K., Khairoutdinov, M., and Watters, D.: Mind the gap – Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars, Atmos. Meas. Tech., 13, 4865–4883, https://doi.org/10.5194/amt-13-4865-2020, 2020. 
Download
Short summary
Satellites can measure cloud geometry using stereoscopy. However, clouds are transparent and often have tenuous boundaries. We evaluate the effect of this on stereoscopy using numerical simulations. Stereoscopic techniques retrieve a cloud boundary that is ~100 m interior to the true boundary and is smoother, depending on the cloud shape and resolution of the instrument. This error is similar across views, demonstrating the strength of stereoscopy for detecting changes in cloud geometry.
Share