Articles | Volume 6, issue 9
Atmos. Meas. Tech., 6, 2301–2309, 2013
https://doi.org/10.5194/amt-6-2301-2013

Special issue: Remote sensing of aerosols and clouds (EGU2011)

Atmos. Meas. Tech., 6, 2301–2309, 2013
https://doi.org/10.5194/amt-6-2301-2013

Research article 09 Sep 2013

Research article | 09 Sep 2013

A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements

G. Saponaro et al.

Related authors

Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
Giulia Saponaro, Moa K. Sporre, David Neubauer, Harri Kokkola, Pekka Kolmonen, Larisa Sogacheva, Antti Arola, Gerrit de Leeuw, Inger H. H. Karset, Ari Laaksonen, and Ulrike Lohmann
Atmos. Chem. Phys., 20, 1607–1626, https://doi.org/10.5194/acp-20-1607-2020,https://doi.org/10.5194/acp-20-1607-2020, 2020
Short summary
Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations
Larisa Sogacheva, Edith Rodriguez, Pekka Kolmonen, Timo H. Virtanen, Giulia Saponaro, Gerrit de Leeuw, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, and Ronald J. van der A
Atmos. Chem. Phys., 18, 16631–16652, https://doi.org/10.5194/acp-18-16631-2018,https://doi.org/10.5194/acp-18-16631-2018, 2018
Short summary
Collocation mismatch uncertainties in satellite aerosol retrieval validation
Timo H. Virtanen, Pekka Kolmonen, Larisa Sogacheva, Edith Rodríguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 11, 925–938, https://doi.org/10.5194/amt-11-925-2018,https://doi.org/10.5194/amt-11-925-2018, 2018
Short summary
Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations
Giulia Saponaro, Pekka Kolmonen, Larisa Sogacheva, Edith Rodriguez, Timo Virtanen, and Gerrit de Leeuw
Atmos. Chem. Phys., 17, 3133–3143, https://doi.org/10.5194/acp-17-3133-2017,https://doi.org/10.5194/acp-17-3133-2017, 2017
Short summary
Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer
Larisa Sogacheva, Pekka Kolmonen, Timo H. Virtanen, Edith Rodriguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 10, 491–505, https://doi.org/10.5194/amt-10-491-2017,https://doi.org/10.5194/amt-10-491-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
MICRU: an effective cloud fraction algorithm designed for UV–vis satellite instruments with large viewing angles
Holger Sihler, Steffen Beirle, Steffen Dörner, Marloes Gutenstein-Penning de Vries, Christoph Hörmann, Christian Borger, Simon Warnach, and Thomas Wagner
Atmos. Meas. Tech., 14, 3989–4031, https://doi.org/10.5194/amt-14-3989-2021,https://doi.org/10.5194/amt-14-3989-2021, 2021
Short summary
A simplified method for the detection of convection using high-resolution imagery from GOES-16
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 14, 3755–3771, https://doi.org/10.5194/amt-14-3755-2021,https://doi.org/10.5194/amt-14-3755-2021, 2021
Short summary
Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021,https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part II: Results over oceans
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021,https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part I: The retrieval algorithms
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021,https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary

Cited articles

Acarreta, J. R. and de Haan, J. F.: Cloud pressure algorithm based on the O2-O2 absorption, OMI Algorithm Theoretical Basis Document (ATBD), vol. III, Clouds, Aerosols, and Surface UV Irradiance, edited by: P. Stammes, R. Neth. Meteorol. Inst., De Bilt, 17–29, 2002.
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Aitkenhead, M. J. and Aalders, I. H.: Classification of Landsat Thematic Mapper imagery for land covering using neural networks, Int. J. Remote Sens., 29, 2075–2084, 2008.
Bishop, C. M.: Neural networks for patter recognition, Clarendom press, Oxford, 1995.
Christodoulou, C. I., Michaelides, S. C., and Pattichis, C. S.: Multifeature texture analysis for the classification of clouds in satellite imagery, IEEE Trans. Geosci. Remote Sens., 41, 11, 2662–2668, https://doi.org/10.1109/TGRS.2003.815404, 2003.