Articles | Volume 6, issue 9
https://doi.org/10.5194/amt-6-2301-2013
https://doi.org/10.5194/amt-6-2301-2013
Research article
 | 
09 Sep 2013
Research article |  | 09 Sep 2013

A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements

G. Saponaro, P. Kolmonen, J. Karhunen, J. Tamminen, and G. de Leeuw

Related authors

Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
Giulia Saponaro, Moa K. Sporre, David Neubauer, Harri Kokkola, Pekka Kolmonen, Larisa Sogacheva, Antti Arola, Gerrit de Leeuw, Inger H. H. Karset, Ari Laaksonen, and Ulrike Lohmann
Atmos. Chem. Phys., 20, 1607–1626, https://doi.org/10.5194/acp-20-1607-2020,https://doi.org/10.5194/acp-20-1607-2020, 2020
Short summary
Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations
Larisa Sogacheva, Edith Rodriguez, Pekka Kolmonen, Timo H. Virtanen, Giulia Saponaro, Gerrit de Leeuw, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, and Ronald J. van der A
Atmos. Chem. Phys., 18, 16631–16652, https://doi.org/10.5194/acp-18-16631-2018,https://doi.org/10.5194/acp-18-16631-2018, 2018
Short summary
Collocation mismatch uncertainties in satellite aerosol retrieval validation
Timo H. Virtanen, Pekka Kolmonen, Larisa Sogacheva, Edith Rodríguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 11, 925–938, https://doi.org/10.5194/amt-11-925-2018,https://doi.org/10.5194/amt-11-925-2018, 2018
Short summary
Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations
Giulia Saponaro, Pekka Kolmonen, Larisa Sogacheva, Edith Rodriguez, Timo Virtanen, and Gerrit de Leeuw
Atmos. Chem. Phys., 17, 3133–3143, https://doi.org/10.5194/acp-17-3133-2017,https://doi.org/10.5194/acp-17-3133-2017, 2017
Short summary
Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer
Larisa Sogacheva, Pekka Kolmonen, Timo H. Virtanen, Edith Rodriguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 10, 491–505, https://doi.org/10.5194/amt-10-491-2017,https://doi.org/10.5194/amt-10-491-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary

Cited articles

Acarreta, J. R. and de Haan, J. F.: Cloud pressure algorithm based on the O2-O2 absorption, OMI Algorithm Theoretical Basis Document (ATBD), vol. III, Clouds, Aerosols, and Surface UV Irradiance, edited by: P. Stammes, R. Neth. Meteorol. Inst., De Bilt, 17–29, 2002.
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Aitkenhead, M. J. and Aalders, I. H.: Classification of Landsat Thematic Mapper imagery for land covering using neural networks, Int. J. Remote Sens., 29, 2075–2084, 2008.
Bishop, C. M.: Neural networks for patter recognition, Clarendom press, Oxford, 1995.
Christodoulou, C. I., Michaelides, S. C., and Pattichis, C. S.: Multifeature texture analysis for the classification of clouds in satellite imagery, IEEE Trans. Geosci. Remote Sens., 41, 11, 2662–2668, https://doi.org/10.1109/TGRS.2003.815404, 2003.