Articles | Volume 6, issue 9
https://doi.org/10.5194/amt-6-2301-2013
https://doi.org/10.5194/amt-6-2301-2013
Research article
 | 
09 Sep 2013
Research article |  | 09 Sep 2013

A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements

G. Saponaro, P. Kolmonen, J. Karhunen, J. Tamminen, and G. de Leeuw

Related authors

Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions
Giulia Saponaro, Moa K. Sporre, David Neubauer, Harri Kokkola, Pekka Kolmonen, Larisa Sogacheva, Antti Arola, Gerrit de Leeuw, Inger H. H. Karset, Ari Laaksonen, and Ulrike Lohmann
Atmos. Chem. Phys., 20, 1607–1626, https://doi.org/10.5194/acp-20-1607-2020,https://doi.org/10.5194/acp-20-1607-2020, 2020
Short summary
Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations – Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations
Larisa Sogacheva, Edith Rodriguez, Pekka Kolmonen, Timo H. Virtanen, Giulia Saponaro, Gerrit de Leeuw, Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos Kourtidis, and Ronald J. van der A
Atmos. Chem. Phys., 18, 16631–16652, https://doi.org/10.5194/acp-18-16631-2018,https://doi.org/10.5194/acp-18-16631-2018, 2018
Short summary
Collocation mismatch uncertainties in satellite aerosol retrieval validation
Timo H. Virtanen, Pekka Kolmonen, Larisa Sogacheva, Edith Rodríguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 11, 925–938, https://doi.org/10.5194/amt-11-925-2018,https://doi.org/10.5194/amt-11-925-2018, 2018
Short summary
Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations
Giulia Saponaro, Pekka Kolmonen, Larisa Sogacheva, Edith Rodriguez, Timo Virtanen, and Gerrit de Leeuw
Atmos. Chem. Phys., 17, 3133–3143, https://doi.org/10.5194/acp-17-3133-2017,https://doi.org/10.5194/acp-17-3133-2017, 2017
Short summary
Post-processing to remove residual clouds from aerosol optical depth retrieved using the Advanced Along Track Scanning Radiometer
Larisa Sogacheva, Pekka Kolmonen, Timo H. Virtanen, Edith Rodriguez, Giulia Saponaro, and Gerrit de Leeuw
Atmos. Meas. Tech., 10, 491–505, https://doi.org/10.5194/amt-10-491-2017,https://doi.org/10.5194/amt-10-491-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025,https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025,https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025,https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025,https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary

Cited articles

Acarreta, J. R. and de Haan, J. F.: Cloud pressure algorithm based on the O2-O2 absorption, OMI Algorithm Theoretical Basis Document (ATBD), vol. III, Clouds, Aerosols, and Surface UV Irradiance, edited by: P. Stammes, R. Neth. Meteorol. Inst., De Bilt, 17–29, 2002.
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998.
Aitkenhead, M. J. and Aalders, I. H.: Classification of Landsat Thematic Mapper imagery for land covering using neural networks, Int. J. Remote Sens., 29, 2075–2084, 2008.
Bishop, C. M.: Neural networks for patter recognition, Clarendom press, Oxford, 1995.
Christodoulou, C. I., Michaelides, S. C., and Pattichis, C. S.: Multifeature texture analysis for the classification of clouds in satellite imagery, IEEE Trans. Geosci. Remote Sens., 41, 11, 2662–2668, https://doi.org/10.1109/TGRS.2003.815404, 2003.
Download
Share