Articles | Volume 7, issue 4
Atmos. Meas. Tech., 7, 887–905, 2014
https://doi.org/10.5194/amt-7-887-2014
Atmos. Meas. Tech., 7, 887–905, 2014
https://doi.org/10.5194/amt-7-887-2014

Research article 04 Apr 2014

Research article | 04 Apr 2014

Characteristics of cloud liquid water path from SEVIRI onboard the Meteosat Second Generation 2 satellite for several cloud types

A. Kniffka et al.

Related authors

The potential of increasing man-made air pollution to reduce rainfall over southern West Africa
Gregor Pante, Peter Knippertz, Andreas H. Fink, and Anke Kniffka
Atmos. Chem. Phys., 21, 35–55, https://doi.org/10.5194/acp-21-35-2021,https://doi.org/10.5194/acp-21-35-2021, 2021
Short summary
Detection of the cloud liquid water path horizontal inhomogeneity in a coastline area by means of ground-based microwave observations: feasibility study
Vladimir S. Kostsov, Dmitry V. Ionov, and Anke Kniffka
Atmos. Meas. Tech., 13, 4565–4587, https://doi.org/10.5194/amt-13-4565-2020,https://doi.org/10.5194/amt-13-4565-2020, 2020
Short summary
Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019,https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
The role of low-level clouds in the West African monsoon system
Anke Kniffka, Peter Knippertz, and Andreas H. Fink
Atmos. Chem. Phys., 19, 1623–1647, https://doi.org/10.5194/acp-19-1623-2019,https://doi.org/10.5194/acp-19-1623-2019, 2019
Short summary
Cloud liquid water path in the sub-Arctic region of Europe as derived from ground-based and space-borne remote observations
Vladimir S. Kostsov, Anke Kniffka, and Dmitry V. Ionov
Atmos. Meas. Tech., 11, 5439–5460, https://doi.org/10.5194/amt-11-5439-2018,https://doi.org/10.5194/amt-11-5439-2018, 2018
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Dissecting effects of orbital drift of polar-orbiting satellites on accuracy and trends of climate data records of cloud fractional cover
Jędrzej S. Bojanowski and Jan P. Musiał
Atmos. Meas. Tech., 13, 6771–6788, https://doi.org/10.5194/amt-13-6771-2020,https://doi.org/10.5194/amt-13-6771-2020, 2020
Short summary
Calibration of global MODIS cloud amount using CALIOP cloud profiles
Andrzej Z. Kotarba
Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020,https://doi.org/10.5194/amt-13-4995-2020, 2020
Short summary
Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O2-O2, MODIS and Suomi-NPP VIIRS
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-122,https://doi.org/10.5194/amt-2020-122, 2020
Revised manuscript accepted for AMT
Short summary
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020,https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans
Alexis Hunzinger, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble, and Alyssa Matthews
Atmos. Meas. Tech., 13, 3147–3166, https://doi.org/10.5194/amt-13-3147-2020,https://doi.org/10.5194/amt-13-3147-2020, 2020
Short summary

Cited articles

Ansmann, A., Tesche, M., Seifert, P., Althausen, D., Engelmann, R., Fruntke, J., Wandinger, U., Mattis, I., and Muller, D.: Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde, J. Geophys. Res., 114, D17208, https://doi.org/10.1029/2008JD011659, 2009.
Barker, H. W., Stephens, G. L., and Qiang Fu: The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry, Q. J. Roy. Meteorol. Soc., 125, 2127–2152, 1999.
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005.
Brunke, M. A., de Szoeke, S. P., Zuidema, P., and Zeng, X.: A comparison of ship and satellite measurements of cloud properties with global climate model simulations in the southeast Pacific stratus deck, Atmos. Chem. Phys., 10, 6527–6536, https://doi.org/10.5194/acp-10-6527-2010, 2010.
Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter, M., and Thomas, W.: Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624, https://doi.org/10.5194/acp-11-5603-2011, 2011.
Download