Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-2409-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-2409-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
HOAPS and ERA-Interim precipitation over the sea: validation against shipboard in situ measurements
Karl Bumke
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Gert König-Langlo
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
Julian Kinzel
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
Deutscher Wetterdienst, Satellite Based Climate Monitoring, 63067 Offenbach, Germany
Marc Schröder
Deutscher Wetterdienst, Satellite Based Climate Monitoring, 63067 Offenbach, Germany
Related authors
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Julian Krüger, Robin Pilch Kedzierski, Karl Bumke, and Katja Matthes
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-32, https://doi.org/10.5194/wcd-2020-32, 2020
Revised manuscript not accepted
Short summary
Short summary
Motivated by the European heat wave occurrences of 2015 and 2018, this study evaluates the influence of cold North Atlantic SST anomalies on European heat waves by using the ERA-5 reanalysis product. Our findings show that widespread cold North Atlantic SST anomalies may be a precursor for a persistent jet stream pattern and are thus important for the onset of high European temperatures.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, https://doi.org/10.5194/acp-17-4093-2017, 2017
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
J. Karstensen, T. Liblik, J. Fischer, K. Bumke, and G. Krahmann
Biogeosciences, 11, 3603–3617, https://doi.org/10.5194/bg-11-3603-2014, https://doi.org/10.5194/bg-11-3603-2014, 2014
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Julian Krüger, Robin Pilch Kedzierski, Karl Bumke, and Katja Matthes
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-32, https://doi.org/10.5194/wcd-2020-32, 2020
Revised manuscript not accepted
Short summary
Short summary
Motivated by the European heat wave occurrences of 2015 and 2018, this study evaluates the influence of cold North Atlantic SST anomalies on European heat waves by using the ERA-5 reanalysis product. Our findings show that widespread cold North Atlantic SST anomalies may be a precursor for a persistent jet stream pattern and are thus important for the onset of high European temperatures.
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Short summary
A Fundamental Climate Data Record (FCDR) from satellite-borne microwave radiometers has been created, covering the time period from October 1978 to December 2015. This article describes how the observations are processed, calibrated, corrected, inter-calibrated, and evaluated in order to provide a homogeneous data record of brightness temperatures across 10 different instruments aboard three different satellite platforms.
Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke
The Cryosphere, 13, 1473–1485, https://doi.org/10.5194/tc-13-1473-2019, https://doi.org/10.5194/tc-13-1473-2019, 2019
Short summary
Short summary
We use 24 years of observations at Neumayer Station, East Antarctica, to calculate the surface energy balance and the associated surface melt, which we find to be mainly driven by the absorption of solar radiation. Meltwater can refreeze in the subsurface snow layers, thereby decreasing the surface albedo and hence allowing for more absorption of solar radiation. By implementing an albedo parameterisation, we show that this feedback accounts for a threefold increase in surface melt at Neumayer.
Rita Glowienka-Hense, Andreas Hense, Thomas Spangehl, and Marc Schröder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-141, https://doi.org/10.5194/gmd-2018-141, 2018
Revised manuscript not accepted
Short summary
Short summary
Ensemble forecast verification treats the issues of forecast errors and uncertainty estimated from ensemble spread. We suggest measures based on relative entropy. For continuous variables correlation and the mean ratio of the ensemble spread to climate variance (analysis of variance (anova)) are related to these entropies. For categorical data corresponding scores are deduced that allow the comparison with continuous data.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.
Julian Liman, Marc Schröder, Karsten Fennig, Axel Andersson, and Rainer Hollmann
Atmos. Meas. Tech., 11, 1793–1815, https://doi.org/10.5194/amt-11-1793-2018, https://doi.org/10.5194/amt-11-1793-2018, 2018
Short summary
Short summary
Latent heat fluxes (LHF) play a major role in the climate system. Over open ocean, they are increasingly observed by satellite instruments. To access their quality, this research focuses on thorough uncertainty analysis of all LHF-related variables of the HOAPS satellite climatology, in parts making use of novel analysis approaches. Results indicate climatological LHF uncertainies up to 50 W m−2, whereby underlying specific humidities tend to be more uncertain than contributing wind speeds.
Steffen Beirle, Johannes Lampel, Yang Wang, Kornelia Mies, Steffen Dörner, Margherita Grossi, Diego Loyola, Angelika Dehn, Anja Danielczok, Marc Schröder, and Thomas Wagner
Earth Syst. Sci. Data, 10, 449–468, https://doi.org/10.5194/essd-10-449-2018, https://doi.org/10.5194/essd-10-449-2018, 2018
Short summary
Short summary
We present time series of the global distribution of water vapor over more than 2 decades based on satellite measurements from different sensors. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. The resulting
Climateproduct allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.
Guanyu Huang, Xiong Liu, Kelly Chance, Kai Yang, Pawan K. Bhartia, Zhaonan Cai, Marc Allaart, Gérard Ancellet, Bertrand Calpini, Gerrie J. R. Coetzee, Emilio Cuevas-Agulló, Manuel Cupeiro, Hugo De Backer, Manvendra K. Dubey, Henry E. Fuelberg, Masatomo Fujiwara, Sophie Godin-Beekmann, Tristan J. Hall, Bryan Johnson, Everette Joseph, Rigel Kivi, Bogumil Kois, Ninong Komala, Gert König-Langlo, Giovanni Laneve, Thierry Leblanc, Marion Marchand, Kenneth R. Minschwaner, Gary Morris, Michael J. Newchurch, Shin-Ya Ogino, Nozomu Ohkawara, Ankie J. M. Piters, Françoise Posny, Richard Querel, Rinus Scheele, Frank J. Schmidlin, Russell C. Schnell, Otto Schrems, Henry Selkirk, Masato Shiotani, Pavla Skrivánková, René Stübi, Ghassan Taha, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Matthew B. Tully, Roeland Van Malderen, Holger Vömel, Peter von der Gathen, Jacquelyn C. Witte, and Margarita Yela
Atmos. Meas. Tech., 10, 2455–2475, https://doi.org/10.5194/amt-10-2455-2017, https://doi.org/10.5194/amt-10-2455-2017, 2017
Short summary
Short summary
It is essential to understand the data quality of +10-year OMI ozone product and impacts of the “row anomaly” (RA). We validate the OMI Ozone Profile (PROFOZ) product from Oct 2004 to Dec 2014 against ozonesonde observations globally. Generally, OMI has good agreement with ozonesondes. The spatiotemporal variation of retrieval performance suggests the need to improve OMI’s radiometric calibration especially during the post-RA period to maintain the long-term stability.
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017, https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary
Short summary
The microwave radiometers (MWR) on board ERS-1, ERS-2, and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 17, 4093–4114, https://doi.org/10.5194/acp-17-4093-2017, https://doi.org/10.5194/acp-17-4093-2017, 2017
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Amelie Driemel, Bernd Loose, Hannes Grobe, Rainer Sieger, and Gert König-Langlo
Earth Syst. Sci. Data, 8, 213–220, https://doi.org/10.5194/essd-8-213-2016, https://doi.org/10.5194/essd-8-213-2016, 2016
Short summary
Short summary
Since 1982-12-09 the icebreaker POLARSTERN is the flagship of German polar research. It has conducted 30 campaigns to Antarctica, and 29 to the Arctic. It is therefore the perfect basis for radiosonde launches in data-sparse regions (oceans and polar regions). Radiosondes are balloon-borne instruments which record atmospheric temperature, humidity and pressure. The data are used, e.g. for short and medium weather forecasts. In these 30 years, 12 378 radiosonde balloons were started on POLARSTERN.
N. Courcoux and M. Schröder
Earth Syst. Sci. Data, 7, 397–414, https://doi.org/10.5194/essd-7-397-2015, https://doi.org/10.5194/essd-7-397-2015, 2015
Short summary
Short summary
Despite its great importance for the climate, the behaviour and content of water vapour in the troposphere is insufficiently known. The ATOVS instruments onboard polar-orbiting satellites allow the retrieval of water vapour at different altitudes and on global scale. Here a consistent reprocessing of water vapour products derived from the ATOVS instrument from 1999 to 2011 is presented and compared to time series derived from other instruments. The data are freely available at www.cmsaf.eu/wui.
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
J. Karstensen, T. Liblik, J. Fischer, K. Bumke, and G. Krahmann
Biogeosciences, 11, 3603–3617, https://doi.org/10.5194/bg-11-3603-2014, https://doi.org/10.5194/bg-11-3603-2014, 2014
R. Lindstrot, M. Stengel, M. Schröder, J. Fischer, R. Preusker, N. Schneider, T. Steenbergen, and B. R. Bojkov
Earth Syst. Sci. Data, 6, 221–233, https://doi.org/10.5194/essd-6-221-2014, https://doi.org/10.5194/essd-6-221-2014, 2014
K. Schamm, M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender
Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, https://doi.org/10.5194/essd-6-49-2014, 2014
B. Dürr, M. Schröder, R. Stöckli, and R. Posselt
Atmos. Meas. Tech., 6, 1883–1901, https://doi.org/10.5194/amt-6-1883-2013, https://doi.org/10.5194/amt-6-1883-2013, 2013
M. Maturilli, A. Herber, and G. König-Langlo
Earth Syst. Sci. Data, 5, 155–163, https://doi.org/10.5194/essd-5-155-2013, https://doi.org/10.5194/essd-5-155-2013, 2013
M. Schröder, M. Jonas, R. Lindau, J. Schulz, and K. Fennig
Atmos. Meas. Tech., 6, 765–775, https://doi.org/10.5194/amt-6-765-2013, https://doi.org/10.5194/amt-6-765-2013, 2013
R. Weller, A. Minikin, A. Petzold, D. Wagenbach, and G. König-Langlo
Atmos. Chem. Phys., 13, 1579–1590, https://doi.org/10.5194/acp-13-1579-2013, https://doi.org/10.5194/acp-13-1579-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Time-resolved measurements of the densities of individual frozen hydrometeors and fresh snowfall
Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Performance evaluation of MeteoTracker mobile sensor for outdoor applications
Impacts of anemometer changes, site relocations and processing methods on wind speed trends in China
Validation of Aeolus L2B products over the tropical Atlantic using radiosondes
Estimating the turbulent kinetic energy dissipation rate from one-dimensional velocity measurements in time
Evaluation of in situ observations on Marine Weather Observer during Typhoon Sinlaku
Validation of the WRF-ARW eclipse model with measurements from the 2019 and 2020 total solar eclipses
Assessing the Ducting Phenomenon and its Impact on GNSS Radio Occultation Refractivity Retrievals over the Northeast Pacific Ocean using Radiosondes and Global Reanalysis
How observations from automatic hail sensors in Switzerland shed light on local hailfall duration and compare with hailpad measurements
A data-driven persistence test for robust (probabilistic) quality control of measured environmental time series: constant value episodes
A comparative evaluation of snowflake particle shape estimation techniques used by the Precipitation Imaging Package (PIP), Multi-Angle Snowflake Camera (MASC), and Two-Dimensional Video Disdrometer (2DVD)
Comparison of GRUAN data products for Meisei iMS-100 and Vaisala RS92 radiosondes at Tateno, Japan
Validation of the Aeolus Level-2B wind product over Northern Canada and the Arctic
Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations
Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations
Something fishy going on? Evaluating the Poisson hypothesis for rainfall estimation using intervalometers: results from an experiment in Tanzania
Suitability of fibre-optic distributed temperature sensing for revealing mixing processes and higher-order moments at the forest–air interface
Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
Smartphone pressure data: quality control and impact on atmospheric analysis
Automated precipitation monitoring with the Thies disdrometer: biases and ways for improvement
More science with less: evaluation of a 3D-printed weather station
Characteristics and performance of wind profiles as observed by the radar wind profiler network of China
Confronting the boundary layer data gap: evaluating new and existing methodologies of probing the lower atmosphere
On the estimation of vertical air velocity and detection of atmospheric turbulence from the ascent rate of balloon soundings
Comparison of turbulence measurements by a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar
Using computational fluid dynamics and field experiments to improve vehicle-based wind measurements for environmental monitoring
Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06° N, 140.13° E), Japan
A method to assess the accuracy of sonic anemometer measurements
Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation
Evaluation of OAFlux datasets based on in situ air–sea flux tower observations over Yongxing Island in 2016
Characteristics of vertical velocities estimated from drop size and fall velocity spectra of a Parsivel disdrometer
Effects of temporal averaging on short-term irradiance variability under mixed sky conditions
Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour
Hotplate precipitation gauge calibrations and field measurements
Field intercomparison of prevailing sonic anemometers
A new method for estimating UV fluxes at ground level in cloud-free conditions
Precipitable water characteristics during the 2013 Colorado flood using ground-based GPS measurements
Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics
Comparison of hourly surface downwelling solar radiation estimated from MSG–SEVIRI and forecast by the RAMS model with pyranometers over Italy
Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure
An automated method for the evaluation of the pointing accuracy of Sun-tracking devices
Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network
Compatibility of different measurement techniques of global solar radiation and application for long-term observations at Izaña Observatory
Uncertainties of ground-based microwave radiometer retrievals in zenith and off-zenith observations under snow conditions
Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges
Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site
Quality assessment of solar UV irradiance measured with array spectroradiometers
Spatial mapping of ground-based observations of total ozone
Performance of WVSS-II hygrometers on the FAAM research aircraft
Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 17, 4581–4598, https://doi.org/10.5194/amt-17-4581-2024, https://doi.org/10.5194/amt-17-4581-2024, 2024
Short summary
Short summary
Accurate measurements of the properties of snowflakes are challenging to make. We present a new technique for the real-time measurement of the density of freshly fallen individual snowflakes. A new thermal-imaging instrument, the Differential Emissivity Imaging Disdrometer (DEID), is shown to be capable of providing accurate estimates of individual snowflake and bulk snow hydrometeor density. The method exploits the rate of heat transfer during the melting of a snowflake on a hotplate.
Zhongming Gao, Heping Liu, Dan Li, Bai Yang, Von Walden, Lei Li, and Ivan Bogoev
Atmos. Meas. Tech., 17, 4109–4120, https://doi.org/10.5194/amt-17-4109-2024, https://doi.org/10.5194/amt-17-4109-2024, 2024
Short summary
Short summary
Using data collected from three levels of a 62 m tower, we found that both the temperature variances and sensible heat flux obtained from sonic anemometers are consistently lower, by a few percent, compared to those from fine-wire thermocouples.
Francesco Barbano, Erika Brattich, Carlo Cintolesi, Abdul Ghafoor Nizamani, Silvana Di Sabatino, Massimo Milelli, Esther E. M. Peerlings, Sjoerd Polder, Gert-Jan Steeneveld, and Antonio Parodi
Atmos. Meas. Tech., 17, 3255–3278, https://doi.org/10.5194/amt-17-3255-2024, https://doi.org/10.5194/amt-17-3255-2024, 2024
Short summary
Short summary
The characterization of the urban microclimate starts with atmospheric monitoring using a dense array of sensors to capture the spatial variations induced by the different morphology, land cover, and presence of vegetation. To provide a new sensor for this scope, this paper evaluates the outdoor performance of a commercial mobile sensor. The results mark the sensor's ability to capture the same atmospheric variability as the reference, making it a valid solution for atmospheric monitoring.
Yi Liu, Lihong Zhou, Yingzuo Qin, Cesar Azorin-Molina, Cheng Shen, Rongrong Xu, and Zhenzhong Zeng
Atmos. Meas. Tech., 17, 1123–1131, https://doi.org/10.5194/amt-17-1123-2024, https://doi.org/10.5194/amt-17-1123-2024, 2024
Short summary
Short summary
Our research analyzed China's wind speed data and addressed inconsistencies caused by factors like equipment changes and station relocations. After improving data quality, China's recent wind speed decrease reduced by 41 %, revealing an increasing trend. This emphasizes the importance of rigorous data processing for accurate trend assessments in various research fields.
Maurus Borne, Peter Knippertz, Martin Weissmann, Benjamin Witschas, Cyrille Flamant, Rosimar Rios-Berrios, and Peter Veals
Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, https://doi.org/10.5194/amt-17-561-2024, 2024
Short summary
Short summary
This study assesses the quality of Aeolus wind measurements over the tropical Atlantic. The results identified the accuracy and precision of the Aeolus wind measurements and the potential source of errors. For instance, the study revealed atmospheric conditions that can deteriorate the measurement quality, such as weaker laser signal in cloudy or dusty conditions, and confirmed the presence of an orbital-dependant bias. These results can help to improve the Aeolus wind measurement algorithm.
Marcel Schröder, Tobias Bätge, Eberhard Bodenschatz, Michael Wilczek, and Gholamhossein Bagheri
Atmos. Meas. Tech., 17, 627–657, https://doi.org/10.5194/amt-17-627-2024, https://doi.org/10.5194/amt-17-627-2024, 2024
Short summary
Short summary
The rate at which energy is dissipated in a turbulent flow is an extremely important quantity. In the atmosphere, it is usually measured by recording a velocity time at a specific location. Our goal is to understand how best to estimate the dissipation rate from such data based on various available methods. Our reference for evaluating the performance of the different methods is data generated with direct numerical simulations and in highly controlled laboratory setups.
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech., 17, 135–144, https://doi.org/10.5194/amt-17-135-2024, https://doi.org/10.5194/amt-17-135-2024, 2024
Short summary
Short summary
The Marine Weather Observer (MWO) system completed a long-term observation, actively approaching the center of Typhoon Sinlaku on 24 July–2 August 2020, over the South China Sea. The in situ observations were evaluated through comparison with buoy observations during the evolution of Typhoon Sinlaku. As a mobile observation station, MWO has shown its unique advantages over traditional observation methods, and the results preliminarily demonstrate the reliable observation capability of MWO.
Carl E. Spangrude, Jennifer W. Fowler, W. Graham Moss, and June Wang
Atmos. Meas. Tech., 16, 5167–5179, https://doi.org/10.5194/amt-16-5167-2023, https://doi.org/10.5194/amt-16-5167-2023, 2023
Short summary
Short summary
Atmospheric measurements were completed for two total solar eclipses. An eclipse-specific weather model was utilized to model the atmosphere before, during, and after the eclipse events. These measurements have enabled further validation of the model's performance in simulating atmospheric responses to total solar eclipses. The paper concludes by recommending further scientific analyses to be explored utilizing the unique datasets presented.
Thomas E. Winning, Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-150, https://doi.org/10.5194/amt-2023-150, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
The effect of ducting due to the presence of the planetary boundary layer (PBL) is prevalent over the northeastern Pacific Ocean from Los Angeles to Honolulu. The ducting induced refractivity bias in the radiosonde climatology and global reanalysis data is highly correlated with the height of the PBL. The magnitude of bias is linearly dependent on the strength of ducting but not the location and the overall reanalysis data systematically underestimates the height of the PBL by as much as 120 m.
Jérôme Kopp, Agostino Manzato, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 16, 3487–3503, https://doi.org/10.5194/amt-16-3487-2023, https://doi.org/10.5194/amt-16-3487-2023, 2023
Short summary
Short summary
We present the first study of extended field observations made by a network of 80 automatic hail sensors from Switzerland. The sensors record the exact timing of hailstone impacts, providing valuable information about the local duration of hailfall. We found that the majority of hailfalls lasts just a few minutes and that most hailstones, including the largest, fall during a first phase of high hailstone density, while a few remaining and smaller hailstones fall in a second low-density phase.
Najmeh Kaffashzadeh
Atmos. Meas. Tech., 16, 3085–3100, https://doi.org/10.5194/amt-16-3085-2023, https://doi.org/10.5194/amt-16-3085-2023, 2023
Short summary
Short summary
Although quality control is a well-known issue in data application, research initiatives and organizations apply given methods based on traditional techniques (ad hoc thresholds and manual). These approaches are not only error prone but also unsuitable for a large volume of data. The method proposed in this paper is based on a new concept (probability) as an intuitive indicator and data’s characteristics, which leads it to be applicable to a wide variety of data and eases its
fit for purpose.
Charles Nelson Helms, Stephen Joseph Munchak, Ali Tokay, and Claire Pettersen
Atmos. Meas. Tech., 15, 6545–6561, https://doi.org/10.5194/amt-15-6545-2022, https://doi.org/10.5194/amt-15-6545-2022, 2022
Short summary
Short summary
This study compares the techniques used to measure snowflake shape by three instruments: PIP, MASC, and 2DVD. Our findings indicate that the MASC technique produces reliable shape measurements; the 2DVD technique performs better than expected considering the instrument was designed to measure raindrops; and the PIP technique does not produce reliable snowflake shape measurements. We also demonstrate that the PIP images can be reprocessed to correct the shape measurement issues.
Shunsuke Hoshino, Takuji Sugidachi, Kensaku Shimizu, Eriko Kobayashi, Masatomo Fujiwara, and Masami Iwabuchi
Atmos. Meas. Tech., 15, 5917–5948, https://doi.org/10.5194/amt-15-5917-2022, https://doi.org/10.5194/amt-15-5917-2022, 2022
Short summary
Short summary
GRUAN data products (GDPs) from Meisei iMS-100 and Vaisala RS92 were compared with 59 dual sounding data. For daytime observations, the iMS-100 temperature is around 0.5 K lower than RS92-GDP in the stratosphere, but for nighttime observations, the difference is around −0.1 K, and data are mostly in agreement. For relative humidity (RH), iMS-100 is around 1–2 % RH higher in the troposphere and 1 % RH smaller in the stratosphere than RS92, but both GDPs are in agreement for most of the profile.
Chih-Chun Chou, Paul J. Kushner, Stéphane Laroche, Zen Mariani, Peter Rodriguez, Stella Melo, and Christopher G. Fletcher
Atmos. Meas. Tech., 15, 4443–4461, https://doi.org/10.5194/amt-15-4443-2022, https://doi.org/10.5194/amt-15-4443-2022, 2022
Short summary
Short summary
Aeolus is the first satellite that provides global wind profile measurements. The mission aims to improve the weather forecasts in the tropics, but also, potentially, in the polar regions. We evaluate the performance of the instrument over the Canadian North and the Arctic by comparing its measured winds in both cloudy and non-cloudy layers to wind data from forecasts, reanalysis, and ground-based instruments. Overall, good agreement was seen, but Aeolus winds have greater dispersion.
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irene Erner, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary
Short summary
We investigate the boundary-layer (BL) height and surface stability in southern Finland using radiosondes, a microwave radiometer and ERA5 reanalysis. Accurately quantifying the BL height is challenging, and the diagnosed BL height can depend strongly on the method used. Microwave radiometers provide reliable estimates of the BL height but only in unstable conditions. ERA5 captures the BL height well except under very stable conditions, which occur most commonly at night during the warm season.
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022, https://doi.org/10.5194/amt-15-811-2022, 2022
Short summary
Short summary
AMDAR temperatures suffer from a bias, which can be related to a difference in the timing of height and measurement and to internal corrections applied to pressure altitude. Based on NWP model temperature data, combined with Mach number and true airspeed, we could estimate corrections. Comparing corrected temperatures with (independent) radiosonde observations demonstrates a reduction in the bias, from 0.5 K to around zero, and standard deviation, of almost 10 %.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021, https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Short summary
We evaluated the suitability of fiber-optic distributed temperature sensing (DTS) for observing spatial (>25 cm) and temporal (>1 s) details of airflow within and above forests. The DTS measurements could discern up to third-order moments of the flow and observe spatial details of coherent flow motions. Similar measurements are not possible with more conventional measurement techniques. Hence, the DTS measurements will provide key insights into flows close to roughness elements, e.g. trees.
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Short summary
This study provides an overview of validation activities to determine the Aeolus HLOS wind errors and to understand the biases by investigating possible dependencies and testing bias correction approaches. To ensure meaningful validation statistics, collocated radiosondes and two different global NWP models, the ECMWF IFS and the ICON model (DWD), are used as reference data. To achieve an estimate for the Aeolus instrumental error the representativeness errors for the comparisons are evaluated.
Rumeng Li, Qinghong Zhang, Juanzhen Sun, Yun Chen, Lili Ding, and Tian Wang
Atmos. Meas. Tech., 14, 785–801, https://doi.org/10.5194/amt-14-785-2021, https://doi.org/10.5194/amt-14-785-2021, 2021
Short summary
Short summary
In this paper, we describe a bias-correction method based on machine learning without the need to obtain users' personal information and demonstrate that the method can effectively reduce the bias in smartphone pressure observations. The characteristics of this dataset are discussed, and the potential application of the bias-corrected data is illustrated by the fine-scale analysis of a hailstorm that occurred on 10 June 2016 in Beijing, China.
Michael Fehlmann, Mario Rohrer, Annakaisa von Lerber, and Markus Stoffel
Atmos. Meas. Tech., 13, 4683–4698, https://doi.org/10.5194/amt-13-4683-2020, https://doi.org/10.5194/amt-13-4683-2020, 2020
Short summary
Short summary
The Thies disdrometer is used to monitor precipitation intensity and its phase and thus may provide valuable information for the management of meteorological and hydrological risks. In this study, we characterize biases of this instrument using common reference instruments at a pre-alpine study site in Switzerland. We find a systematic underestimation of liquid precipitation amounts and suggest possible reasons for and corrections to this bias and relate these findings to other study sites.
Adam Theisen, Max Ungar, Bryan Sheridan, and Bradley G. Illston
Atmos. Meas. Tech., 13, 4699–4713, https://doi.org/10.5194/amt-13-4699-2020, https://doi.org/10.5194/amt-13-4699-2020, 2020
Short summary
Short summary
A low-cost weather station with 3D-printed components was built, based on the UCAR 3D-PAWS project, and deployed alongside an Oklahoma Mesonet station for an 8-month study to determine the longevity of these sensors and their performance compared with standard commercial sensors. Results show that the low-cost sensors can perform as well as the more expensive commercial ones for short-term deployments with the possibility for long-term deployments with proper maintenance and replacement.
Boming Liu, Jianping Guo, Wei Gong, Lijuan Shi, Yong Zhang, and Yingying Ma
Atmos. Meas. Tech., 13, 4589–4600, https://doi.org/10.5194/amt-13-4589-2020, https://doi.org/10.5194/amt-13-4589-2020, 2020
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. However, the wind profile across China remains poorly understood. Here we reveal the salient features of winds from the radar wind profile of China, including the main instruments, spatial coverage and sampling frequency. This work is expected to allow the public and scientific community to be more familiar with the nationwide network and encourage the use of these valuable data in future research and applications.
Tyler M. Bell, Brian R. Greene, Petra M. Klein, Matthew Carney, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 3855–3872, https://doi.org/10.5194/amt-13-3855-2020, https://doi.org/10.5194/amt-13-3855-2020, 2020
Short summary
Short summary
It is well known that the atmospheric boundary layer is under-sampled in the vertical dimension. Recently, weather-sensing uncrewed aerial systems (WxUAS) have created new opportunities to sample this region of the atmosphere. This study compares a WxUAS developed at the University of Oklahoma to ground-based remote sensing and radiosondes. We find that overall the systems generally agreed well both thermodynamically and kinematically. However, there is still room to improve each system.
Hubert Luce and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 13, 1989–1999, https://doi.org/10.5194/amt-13-1989-2020, https://doi.org/10.5194/amt-13-1989-2020, 2020
Short summary
Short summary
Vertical ascent rate Vb of meteorological balloons is sometimes used for retrieving vertical air velocity, an important parameter for meteorological applications. Comparisons with concurrent radar and unmanned aerial vehicle (UAV) measurements of atmospheric turbulence showed that Vb can be increased in turbulent layers due to the probable decrease in the drag coefficient of the balloon. We conclude that Vb can also potentially be used for the detection of atmospheric turbulence.
Matthias Mauder, Michael Eggert, Christian Gutsmuths, Stefan Oertel, Paul Wilhelm, Ingo Voelksch, Luise Wanner, Jens Tambke, and Ivan Bogoev
Atmos. Meas. Tech., 13, 969–983, https://doi.org/10.5194/amt-13-969-2020, https://doi.org/10.5194/amt-13-969-2020, 2020
Short summary
Short summary
Sonic anemometers are prone to probe-induced flow distortion effects. Here, we present the results of an intercomparison experiment between a CSAT3B sonic anemometer and a high-resolution bistatic Doppler lidar, which is inherently free of flow distortion. Our results show an agreement of the mean wind velocity measurements and the standard deviations of the vertical wind speed with comparabilities of 0.082 and 0.020 m s−1, respectively. Friction velocity is underestimated by the CSAT3B by 3 %.
Tara Hanlon and David Risk
Atmos. Meas. Tech., 13, 191–203, https://doi.org/10.5194/amt-13-191-2020, https://doi.org/10.5194/amt-13-191-2020, 2020
Short summary
Short summary
In this study, we aimed to improve accuracy of wind speed and direction measurements from an anemometer mounted atop a research vehicle. Controlled field tests and computer simulations showed that the vehicle shape biases airflow above the vehicle. The results indicate that placing an anemometer at a significant height (> 1 m) above the vehicle, and calibrating anemometer measurements for vehicle shape and wind angle, can be effective in reducing bias in measurements of wind speed and direction.
Eriko Kobayashi, Shunsuke Hoshino, Masami Iwabuchi, Takuji Sugidachi, Kensaku Shimizu, and Masatomo Fujiwara
Atmos. Meas. Tech., 12, 3039–3065, https://doi.org/10.5194/amt-12-3039-2019, https://doi.org/10.5194/amt-12-3039-2019, 2019
Short summary
Short summary
The authors carried out dual flights of RS-11G and RS92-SGP radiosondes and investigated the differences in the performance of the radiosondes to help characterize GRUAN data products. A novel aspect of GRUAN data products is that vertically resolved uncertainty estimates and metadata are provided for each sounding and comparison of GRUAN data products is important in securing the temporal homogeneity of climate data records.
Alfredo Peña, Ebba Dellwik, and Jakob Mann
Atmos. Meas. Tech., 12, 237–252, https://doi.org/10.5194/amt-12-237-2019, https://doi.org/10.5194/amt-12-237-2019, 2019
Short summary
Short summary
We propose a method to assess the accuracy of turbulence measurements by sonic anemometers. The idea is to compute the ratio of the vertical to along-wind velocity spectrum within the inertial subrange. We found that the Metek USA-1 and the Campbell CSAT3 sonic anemometers do not show the expected theoretical ratio. A wind-tunnel-based correction recovers the expected ratio for the USA-1. A correction for the CSAT3 does not, illustrating that this sonic anemometer suffers from flow distortion.
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Short summary
The GRUAN processor is a software developed to collocate radiosonde profiles and numerical weather prediction model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate the radiosonde uncertainties in that simulation. This work responds to an identified lack of metrologically traceable characterisation of uncertainties in model fields that are increasingly used for the validation and calibration of space-borne instruments.
Fenghua Zhou, Rongwang Zhang, Rui Shi, Ju Chen, Yunkai He, Dongxiao Wang, and Qiang Xie
Atmos. Meas. Tech., 11, 6091–6106, https://doi.org/10.5194/amt-11-6091-2018, https://doi.org/10.5194/amt-11-6091-2018, 2018
Short summary
Short summary
In this work, successive air–sea heat flux-related data were acquired over the course of a year (01/02/2016–31/01/2017) at the YXASFT on Yongxing Island. Then, seasonal comparisons were conducted for the daily mean surface bulk variables and heat fluxes between the WHOI OAFlux products and YXASFT observations. The conclusions in this paper will provide useful reference for researchers on how to select the appropriate OAFlux datasets in different seasons over the South China Sea.
Dong-Kyun Kim and Chang-Keun Song
Atmos. Meas. Tech., 11, 3851–3860, https://doi.org/10.5194/amt-11-3851-2018, https://doi.org/10.5194/amt-11-3851-2018, 2018
Short summary
Short summary
A new technique to estimate vertical velocities from Parsivel-measured drop and velocity spectra is developed. The estimated vertical velocities (w) were compared with w components of winds measured from the anemometer at the same site. They showed good agreement with each other, suggesting that this technique is reliable and applicable to rainfall studies. With these w values, rainfall characteristics related to up-/downdraft were investigated on the windward and leeward sides of a mountain.
Gerald M. Lohmann and Adam H. Monahan
Atmos. Meas. Tech., 11, 3131–3144, https://doi.org/10.5194/amt-11-3131-2018, https://doi.org/10.5194/amt-11-3131-2018, 2018
Short summary
Short summary
Using high-resolution surface irradiance data with original temporal resolutions between 0.01 s and 1 s from six different locations in the Northern Hemisphere, we characterize the changes in representation of temporal variability resulting from time averaging. Our results indicate that a temporal averaging time scale of around 1 s marks a transition in representing single-point irradiance variability, such that longer averages result in substantial underestimates of variability.
Astrid Lampert, Jörg Hartmann, Falk Pätzold, Lennart Lobitz, Peter Hecker, Katrin Kohnert, Eric Larmanou, Andrei Serafimovich, and Torsten Sachs
Atmos. Meas. Tech., 11, 2523–2536, https://doi.org/10.5194/amt-11-2523-2018, https://doi.org/10.5194/amt-11-2523-2018, 2018
Short summary
Short summary
We compared two different fast-response humidity sensors simultaneously on different airborne platforms. One is a particular, well-establed Lyman-alpha hygrometer that has been used for decades as the standard for fast airborne humidity measurements. However, it is not available any more. The other one is a hygrometer based on the absorption of infrared radiation, from LI-COR. For an environment of low vibrations, the LI-COR sensor is suitable for fast airborne water vapour measurements.
Nicholas Zelasko, Adam Wettlaufer, Bujidmaa Borkhuu, Matthew Burkhart, Leah S. Campbell, W. James Steenburgh, and Jefferson R. Snider
Atmos. Meas. Tech., 11, 441–458, https://doi.org/10.5194/amt-11-441-2018, https://doi.org/10.5194/amt-11-441-2018, 2018
Short summary
Short summary
The hotplate precipitation gauge has the potential to solve some problems with conventional precipitation gauge measurements, especially for snowfall. This paper extends the seminal published work, Rasmussen et al. (2011). We assert that the precipitation rate algorithm we have developed for the hotplate is an improvement on that which was previously published.
Matthias Mauder and Matthias J. Zeeman
Atmos. Meas. Tech., 11, 249–263, https://doi.org/10.5194/amt-11-249-2018, https://doi.org/10.5194/amt-11-249-2018, 2018
William Wandji Nyamsi, Mikko R. A. Pitkänen, Youva Aoun, Philippe Blanc, Anu Heikkilä, Kaisa Lakkala, Germar Bernhard, Tapani Koskela, Anders V. Lindfors, Antti Arola, and Lucien Wald
Atmos. Meas. Tech., 10, 4965–4978, https://doi.org/10.5194/amt-10-4965-2017, https://doi.org/10.5194/amt-10-4965-2017, 2017
Short summary
Short summary
This paper proposes a new, fast and accurate method for estimating UV fluxes at ground level in cloud-free conditions at any place and time. The method performs very well with the Copernicus Atmosphere Monitoring Service products as inputs describing the state of the atmosphere. An accuracy that is close to the uncertainty of the measurements themselves is reached. We believe that our research will be widely used in the near future.
Hannah K. Huelsing, Junhong Wang, Carl Mears, and John J. Braun
Atmos. Meas. Tech., 10, 4055–4066, https://doi.org/10.5194/amt-10-4055-2017, https://doi.org/10.5194/amt-10-4055-2017, 2017
Short summary
Short summary
The precipitable water (PW) was examined for the 2013 Colorado flood to determine how climatologically abnormal this event was. The seasonal PW maximum extended into early September and the September monthly mean PW exceeded the 99th percentile of climatology with a value 25% higher than the 40-year climatology. The above-normal, near-saturation PW values during the flood were the result of large-scale moisture transport into Colorado from the eastern tropical Pacific and the Gulf of Mexico.
Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue
Atmos. Meas. Tech., 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017, https://doi.org/10.5194/amt-10-2485-2017, 2017
Short summary
Short summary
The model RS92 radiosonde manufactured by Vaisala Ltd. is now being replaced with a successor model, the RS41, and we need to clarify accuracy differences between them for a variety of research. For this purpose, 36 twin-radiosonde flights were performed over the oceans from the Arctic to the tropics. Basically the differences between the RS41 and RS92 were smaller than the nominal combined uncertainties of the RS41; however, we found non-negligible biases in relative humidity and pressure.
Stefano Federico, Rosa Claudia Torcasio, Paolo Sanò, Daniele Casella, Monica Campanelli, Jan Fokke Meirink, Ping Wang, Stefania Vergari, Henri Diémoz, and Stefano Dietrich
Atmos. Meas. Tech., 10, 2337–2352, https://doi.org/10.5194/amt-10-2337-2017, https://doi.org/10.5194/amt-10-2337-2017, 2017
Short summary
Short summary
In this paper we evaluate the performance of two estimates of the global horizontal irradiance (GHI), one derived from the Meteosat Second Generation and one from a meteorological model (Regional Atmospheric Modeling System) forecast. The focus area is Italy, and the performance is evaluated for 12 pyranometers spanning a range of climate conditions, from Mediterranean maritime to Alpine.
Armin Sigmund, Lena Pfister, Chadi Sayde, and Christoph K. Thomas
Atmos. Meas. Tech., 10, 2149–2162, https://doi.org/10.5194/amt-10-2149-2017, https://doi.org/10.5194/amt-10-2149-2017, 2017
Dietmar J. Baumgartner, Werner Pötzi, Heinrich Freislich, Heinz Strutzmann, Astrid M. Veronig, and Harald E. Rieder
Atmos. Meas. Tech., 10, 1181–1190, https://doi.org/10.5194/amt-10-1181-2017, https://doi.org/10.5194/amt-10-1181-2017, 2017
Short summary
Short summary
In this work we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a platform-independent, fully automated, and cost-effective system to evaluate the pointing accuracy of Sun-tracking devices as well as its application at the Kanzelhöhe Observatory (KSO) Austrian radiation monitoring network (ARAD) site and to the results from a 15-week evaluating period.
Samuel T. Buisán, Michael E. Earle, José Luís Collado, John Kochendorfer, Javier Alastrué, Mareile Wolff, Craig D. Smith, and Juan I. López-Moreno
Atmos. Meas. Tech., 10, 1079–1091, https://doi.org/10.5194/amt-10-1079-2017, https://doi.org/10.5194/amt-10-1079-2017, 2017
Short summary
Short summary
Within the framework of the WMO-SPICE (Solid Precipitation Intercomparison Experiment) the Thies tipping bucket precipitation gauge, widely used at AEMET, was assessed against the SPICE reference.
Most countries use tipping buckets and for this reason the underestimation of snowfall precipitation is a large-scale problem.
The methodology presented here can be used by other national weather services to test precipitation bias corrections and to identify regions where errors are higher.
Rosa Delia García, Emilio Cuevas, Omaira Elena García, Ramón Ramos, Pedro Miguel Romero-Campos, Fernado de Ory, Victoria Eugenia Cachorro, and Angel de Frutos
Atmos. Meas. Tech., 10, 731–743, https://doi.org/10.5194/amt-10-731-2017, https://doi.org/10.5194/amt-10-731-2017, 2017
Short summary
Short summary
A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.
Wengang Zhang, Guirong Xu, Yuanyuan Liu, Guopao Yan, Dejun Li, and Shengbo Wang
Atmos. Meas. Tech., 10, 155–165, https://doi.org/10.5194/amt-10-155-2017, https://doi.org/10.5194/amt-10-155-2017, 2017
Short summary
Short summary
A comparison between a microwave radiometer and radiosonde is carried out, and performances of zenith and off-zenith observations during snowfall are shown. In off-zenith observations, the effect of snow is obviously mitigated, and the deviation between microwave radiometer and radiosonde is small. With the aid of off-zenith observation, reliable thermodynamic atmospheric profiles can be collected, and those will be useful for the analysis and forecasting of severe convective weather.
Mattia Stagnaro, Matteo Colli, Luca Giovanni Lanza, and Pak Wai Chan
Atmos. Meas. Tech., 9, 5699–5706, https://doi.org/10.5194/amt-9-5699-2016, https://doi.org/10.5194/amt-9-5699-2016, 2016
Short summary
Short summary
The research presented in this work involves field data analysis, numerical modelling techniques and approaches to a long-standing problem of liquid precipitation measurements: the sampling and the interpretation of the tipping-bucket sensor signal. The present study shows relevant implications of the adopted data processing methods for the accuracy of the rainfall intensity measurements provided by traditional tipping-bucket gauges.
Michael P. Jensen, Donna J. Holdridge, Petteri Survo, Raisa Lehtinen, Shannon Baxter, Tami Toto, and Karen L. Johnson
Atmos. Meas. Tech., 9, 3115–3129, https://doi.org/10.5194/amt-9-3115-2016, https://doi.org/10.5194/amt-9-3115-2016, 2016
Short summary
Short summary
An intercomparison of Vaisala's latest-generation radiosonde RS41 and the widely used RS92 was performed in north-central Oklahoma, USA, during June 2014. The results indicate that for the conditions observed during the intercomparison the measurements of pressure, temperature, humidity, and winds agree to within the manufacturer-specified combined uncertainties. Some important exceptions were noted when exiting liquid cloud layers where evaporative cooling has less impact for RS41 measurements.
Luca Egli, Julian Gröbner, Gregor Hülsen, Luciano Bachmann, Mario Blumthaler, Jimmy Dubard, Marina Khazova, Richard Kift, Kees Hoogendijk, Antonio Serrano, Andrew Smedley, and José-Manuel Vilaplana
Atmos. Meas. Tech., 9, 1553–1567, https://doi.org/10.5194/amt-9-1553-2016, https://doi.org/10.5194/amt-9-1553-2016, 2016
Short summary
Short summary
Array spectroradiometers are small, light, robust and cost-effective instruments, and are increasingly used for atmospheric measurements. The quality of array spectroradiometers is assessed for the reliable quantification of ultraviolet radiation (UV) in order to monitor the exposure of UV radiation to human health. The study shows that reliable UV measurements with these instruments are limited for observations around noon and show large biases in the morning and evening.
K.-L. Chang, S. Guillas, and V. E. Fioletov
Atmos. Meas. Tech., 8, 4487–4505, https://doi.org/10.5194/amt-8-4487-2015, https://doi.org/10.5194/amt-8-4487-2015, 2015
Short summary
Short summary
The aim of this article is to analyze the total column ozone data from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) that consists of around 150 stations irregularly spaced over the globe. Our use of a new statistical spatial technique over the globe can greatly outperform the currently used spatial approximation of the total column ozone in terms of approximation. We feel that this technique could benefit the ozone science community.
A. K. Vance, S. J. Abel, R. J. Cotton, and A. M. Woolley
Atmos. Meas. Tech., 8, 1617–1625, https://doi.org/10.5194/amt-8-1617-2015, https://doi.org/10.5194/amt-8-1617-2015, 2015
Short summary
Short summary
Comparisons on the FAAM BAe 146-301 aircraft show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet (wvssR) in coud-free conditions, but a WVSS-II fed from the standard flush inlet (wvssF) over-reads, except at higher humidities. Case studies in cloudy conditions show that wvssF is immune to liquid water and ice, whilst wvssR is susceptible to both. Both WVSS-II inlets respond much more rapidly than the chilled mirror devices, especially wvssF.
Cited articles
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, 2003.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Andersson, A., Klepp, C., Fennig, K., Bakan, S., Graßl, H., and Schulz, J.: Evaluation of HOAPS-3 ocean surface freshwater flux components, J. Appl. Meteorol. Climatol., 50, 379–398, https://doi.org/10.1175/2010JAMC2341.1, 2011.
Behrangi, A., Hsu, K.-L., Iman, B., Sorooshian, S., Huffman, G. J., and Kulikowski, R. J.: PERSIANN-MSA: A precipitation estimation method from satellite-based multispectral analysis, J. Hydrometeorol., 10, 1414–1429, https://doi.org/10.1175/2009JHM1139.1, 2009.
Belo-Pereira, M., Dutra, E., and Viterbo, P.: Evaluation of global precipitation data sets over the Iberian Peninsula, J. Geophys. Res., 116, D20101, https://doi.org/10.1029/2010JD015481, 2011.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteor. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011.
Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Met. Clim., 46, 634–650, 2007
Bumke, K., Clemens, M., Grassl, H., Pang, S., Peters, G., Seltmann, J. E. E., Siebenborn, T., and Wagner, A.: Accurate areal precipitation measurements over the land and sea (APOLAS), BALTEX Newsletter 6, 9–13, 2004.
Bumke, K., Fennig, K., Strehz, A., Mecking, R., and Schröder, M.: HOAPS precipitation validation with ship-borne rain gauge measurements over the Baltic Sea, Tellus A, 64, 18486, https://doi.org/10.3402/tellusa.v64i0.18486, 2012.
Bumke, K., König-Langlo, G., Kinzel, J., and Schröder, M.: Precipitation over sea: Validation against shipboard in-situ measurements, https://doi.org/10.1594/PANGAEA.858657, last access: 27 May 2016.
Bundesamt für Seeschifffahrt und Hydrographie (BSH): DOD Data Centre, available at: http://www.bsh.de/en/Marine_data/Observations/DOD_Data_Centre/ (last access: 27 May 2016), 2015.
Clemens, M.: Machbarkeitsstudie zur räumlichen Niederschlagsanalyse aus Schiffsmessungen über der Ostsee, PhD thesis, Christian-Albrechts-Universität, Kiel, 178 pp., 2002
Clemens, M. and Bumke, K.: Precipitation fields over the Baltic Sea derived from ship rain gauge on merchant ships, Boreal Environ. Res., 7, 425–436, 2002.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000, Science, 336, 455–458, https://doi.org/10.1126/science.1212222, 2012.
ECMWF, FAQ: Over what horizontal area are grid point data values valid?, available at: http://www.ecmwf.int/en/over-what-horizontal-area-are-grid-point-data-values-valid (last access: 27 May 2016), 2015.
Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979.
Froidurot, S., Zin, I., Hingray, B., and Gautheron, A.: Sensitivity of Precipitation Phase over the Swiss Alps to Different Meteorological Variables, J. Hydrometeorol., 15, 685–696, https://doi.org/10.1175/JHM-D-13-073.1, 2014.
Grist, J. P., Josey, S. A., Marsh, R., Kwon, Y.-O., Bingham, R. J., and Blaker, A. T.: The Surface-Forced Overturning of the North Atlantic: Estimates from Modern Era Atmospheric Reanalysis Datasets, J. Climate, 27, 3596–3618, https://doi.org/10.1175/JCLI-D-13-00070.1, 2014.
Großklaus, M.: Niederschlagsmessung auf dem Ozean von fahrenden Schiffen, Dissertation, Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, 1996.
Großklaus, M., Uhlig, K., and Hasse, L.: An optical disdrometer for use in high wind speeds, J. Atmos. Ocean. Technol., 15, 1051–1059, 1998.
Hasse, L., Großklaus, M., Uhlig, K., and Timm, P.: A ship rain gauge for use under high wind speeds, J. Atmos. Ocean. Technol., 15, 380–386, 1998.
Hogan, A.: Objective estimates of airborne snow properties, J. Atmos. Ocean. Technol., 11, 432–444, 1994.
Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R., Gruber, A., Janowiak, J., McNab, A., Rudolf, B., and Schneider, U.: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset, B. Am. Meteorol. Soc., 78, 5–20, 1997.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale, J. Hydrometeorol., 8, 38–55, 2007.
Huffman, G. J., Bolvin, D. T., and Nelkin, E. J.: Integrated Multi-satellitE Retrievals for GPM (IMERG) Technical Documentation, NASA/GSFC Code 612, 47 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (last access: 27 May 2016), 2015.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at 8 km, Hourly Resolution, J. Climate, 5, 487–503, 2004.
Kållberg, P.: Forecast drift in ERA-Interim, ERA report series no, 10, http://www.ecmwf.int/sites/default/files/elibrary/2011/10381-forecast-drift-era-interim.pdf (last access: 27 May 2016), 2011.
Kidd, C., Dawkins, E., and Huffman, G. J.: Comparison of Precipitation Derived from the ECMWF Operational Forecast Model and Satellite Precipitation Datasets, J. Hydrometeorol., 14, 1463–1482 https://doi.org/10.1175/JHM-D-12-0182, 2013.
Kinzel, J.: Validation of HOAPS latent heat fluxes against parameterizations applied to RV Polarstern data for 1995–1997 (Master thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 96 pp., 2013.
Klepp, C.: The Oceanic Shipboard Precipitation Measurement Network for Surface Validation – OceanRAIN, Atmos. Res., 163, 74–90, https://doi.org/10.1016/j.atmosres.2014.12.014, 2015.
Klepp C., Bumke, K., Bakan, S., and Bauer, P.: Ground validation of oceanic snowfall detection in satellite climatologies during LOFZY, Tellus A, 62, 469–480, https://doi.org/10.1111/j.1600-0870.2010.00459.x, 2010.
König-Langlo, G., Loose, B., and Bräuer, B.: 25 Years of Polarstern Meteorology, WDC-MARE Reports, 4 (CD-ROM), 1–137, https://doi.org/10.2312/wdc-mare.2006.4, 2006.
Lempio, G., Bumke, K., and Macke, A.: Measurement of solid precipitation with an optical disdrometer, Adv. Geosci., 10, 91–97, 2007.
Lindsay, R., Wensnahan, M., Schweiger, A., and Zhang, J.: Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic, J. Climate, 27, 2588–2606, https://doi.org/10.1175/JCLI-D-13-00014.1, 2014.
Liu, C. and Allan, R. P.: Observed and simulated precipitation responses in wet and dry regions 1850–2100, IOP Publishing Ltd, Environ. Res. Lett., 8, 11 pp., https://doi.org/10.1088/1748-9326/8/3/034002, 2013.
Macke, A., Francis, P. N., Mc Farquhar, G. M., and Kinne, S.: The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds, J. Atmos. Sci., 55, 2874–2883, 1998.
Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Levizzani, V., Panegrossi, G., Petracca, M., Sanò, P., Di Paola, F., Biron, D., De Leonibus, L., Melfi, D., Rosci, P., Vocino, A., Zauli, F., Pagliara, P., Puca, S., Rinollo, A., Milani, L., Porcù, F., and Gattari, F.: Precipitation products from the hydrology SAF, Nat. Hazards Earth Syst. Sci., 13, 1959–1981, https://doi.org/10.5194/nhess-13-1959-2013, 2013.
O'orman, P. A., Allan, R. P., Byrne, M. P., and Previdi, M.: Energetic Constraints on Precipitation Under Climate Change, Surv. Geophys., 33, 585–608, https://doi.org/10.1007/s10712-011-9159-6, 2012.
Pfeifroth, U., Mueller, R., and Ahrens, B.: Evaluation of Satellite-Based and Reanalysis Precipitation Data in the Tropical Pacific, J. Appl. Meteor. Climatol., 52, 634–644, https://doi.org/10.1175/JAMC-D-12-049.1, 2013.
Puca, S., Porcu, F., Rinollo, A., Vulpiani, G., Baguis, P., Balabanova, S., Campione, E., Ertürk, A., Gabellani, S., Iwanski, R., Jurašek, M., Kanák, J., Kerényi, J., Koshinchanov, G., Kozinarova, G., Krahe, P., Lapeta, B., Lábó, E., Milani, L., Okon, L'., Öztopal, A., Pagliara, P., Pignone, F., Rachimow, C., Rebora, N., Roulin, E., Sönmez, I., Toniazzo, A., Biron, D., Casella, D., Cattani, E., Dietrich, S., Di Paola, F., Laviola, S., Levizzani, V., Melfi, D., Mugnai, A., Panegrossi, G., Petracca, M., Sanò, P., Zauli, F., Rosci, P., De Leonibus, L., Agosta, E., and Gattari, F.: The validation service of the hydrological SAF geostationary and polar satellite precipitation products, Nat. Hazards Earth Syst. Sci., 14, 871–889, https://doi.org/10.5194/nhess-14-871-2014, 2014.
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F.: Observations: Ocean, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.018, 2013.
Schmitt, R. W.: Salinity and the global water cycle, Oceanography, 21, 12–19, https://doi.org/10.5670/oceanog.2008.63, 2008.
Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., Levizzani, V., and De Roo, A.: Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins, J. Hydrometeorol., 13, 1760–1783, https://doi.org/10.1175/JHM-D-12-032.1, 2012.
Trenberth, K. E.: Changes in precipitation with climate change, Clim. Res., 47, 123–138, 2011.
Valdivieso, M. and Haines, K.: Scientific Validation Report (ScVR) for v1 Reprocessed Analysis and Reanalysis, GMES Marine Core Services Technical Report WP04-GLO-U-Reading_v1, 28 pp., March 2011, 2011.
Wang, J. J., Adler, R. F., Huffman, G. J., and Bolvin, D. F.: An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation, J. Climate, 27, 273–284, https://doi.org/10.1175/JCLI-D-13-00331.1, 2014.
WWRP/WGNE.: Methods for dichotomous forecasts, Joint Working Group on Verification sponsored by the WMO, forecast verification, issues, methods and FAQ, available at: www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous forecasts (last access: 27 May 2016), 2014.
Short summary
Satellite-derived HOAPS and ERA-Interim reanalysis data were validated against shipboard precipitation measurements. Results show that HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially at low latitudes. However, HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide precipitation rate is close to measurements. ERA-Interim strongly overestimates it in the intertropical convergence zone and southern subtropics.
Satellite-derived HOAPS and ERA-Interim reanalysis data were validated against shipboard...