Articles | Volume 9, issue 7
https://doi.org/10.5194/amt-9-3009-2016
https://doi.org/10.5194/amt-9-3009-2016
Research article
 | 
14 Jul 2016
Research article |  | 14 Jul 2016

EARLINET Single Calculus Chain – technical – Part 2: Calculation of optical products

Ina Mattis, Giuseppe D'Amico, Holger Baars, Aldo Amodeo, Fabio Madonna, and Marco Iarlori

Related authors

Pollen observations at four EARLINET stations during the ACTRIS-COVID-19 campaign
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022,https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Biomass burning events measured by lidars in EARLINET – Part 2: Optical properties investigation
Mariana Adam, Iwona S. Stachlewska, Lucia Mona, Nikolaos Papagiannopoulos, Juan Antonio Bravo-Aranda, Michaël Sicard, Doina N. Nicolae, Livio Belegante, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Arnoud Apituley, Ina Mattis, Anatoli Chaikovsky, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-759,https://doi.org/10.5194/acp-2021-759, 2021
Revised manuscript not accepted
Short summary
Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany
Harald Flentje, Ina Mattis, Zak Kipling, Samuel Rémy, and Werner Thomas
Geosci. Model Dev., 14, 1721–1751, https://doi.org/10.5194/gmd-14-1721-2021,https://doi.org/10.5194/gmd-14-1721-2021, 2021
Short summary
An EARLINET early warning system for atmospheric aerosol aviation hazards
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020,https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Biomass burning events measured by lidars in EARLINET. Part II. Results and discussions
Mariana Adam, Doina Nicolae, Livio Belegante, Iwona S. Stachlewska, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christiana Anna Papanikolaou, Nikos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Juan Antonio Bravo-Aranda, Arnoud Apituley, Nikolaos Papagiannopoulos, Lucia Mona, Ina Mattis, Anatoli Chaikovsky, Michaël Sicard, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-647,https://doi.org/10.5194/acp-2020-647, 2020
Revised manuscript not accepted
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Total column optical depths retrieved from CALIPSO lidar ocean surface backscatter
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, John A. Smith, and Brian J. Getzewich
Atmos. Meas. Tech., 17, 6517–6545, https://doi.org/10.5194/amt-17-6517-2024,https://doi.org/10.5194/amt-17-6517-2024, 2024
Short summary
ALICENET – an Italian network of automated lidar ceilometers for four-dimensional aerosol monitoring: infrastructure, data processing, and applications
Annachiara Bellini, Henri Diémoz, Luca Di Liberto, Gian Paolo Gobbi, Alessandro Bracci, Ferdinando Pasqualini, and Francesca Barnaba
Atmos. Meas. Tech., 17, 6119–6144, https://doi.org/10.5194/amt-17-6119-2024,https://doi.org/10.5194/amt-17-6119-2024, 2024
Short summary
Post-process correction improves the accuracy of satellite PM2.5 retrievals
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen
Atmos. Meas. Tech., 17, 5747–5764, https://doi.org/10.5194/amt-17-5747-2024,https://doi.org/10.5194/amt-17-5747-2024, 2024
Short summary
Increasing aerosol optical depth spatial and temporal availability by merging datasets from geostationary and sun-synchronous satellites
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech., 17, 5455–5476, https://doi.org/10.5194/amt-17-5455-2024,https://doi.org/10.5194/amt-17-5455-2024, 2024
Short summary
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024,https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary

Cited articles

Amodeo, A., D'Amico, G., Mattis, I., Freudenthaler, V., and Pappalardo, G.: Error calculation for EARLINET products in the context of quality assurance and single calculus chain, to be submitted to Atmos. Meas. Tech. Discuss., 2016.
Ansmann, A., Riebesell, M., and Weitkamp, C.: Measurement of atmospheric aerosol extinction profiles with a Raman lidar, Opt. Lett., 15, 746–748, 1990.
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic–backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio, Appl. Phys. B, 55, 18–28, 1992a.
Ansmann, A., Wandinger, U., Riebesell, M., Weitcamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113–7131, 1992b.
Short summary
We present an automated software tool for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the modules of the Single Calculus Chain of the European Aerosol Research Lidar Network (EARLINET). It allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way.