Articles | Volume 9, issue 10
https://doi.org/10.5194/amt-9-5119-2016
https://doi.org/10.5194/amt-9-5119-2016
Research article
 | 
19 Oct 2016
Research article |  | 19 Oct 2016

A polarimetric scattering database for non-spherical ice particles at microwave wavelengths

Yinghui Lu, Zhiyuan Jiang, Kultegin Aydin, Johannes Verlinde, Eugene E. Clothiaux, and Giovanni Botta

Related authors

The Earth Model Column Collaboratory (EMC2) v1.1: an open-source ground-based lidar and radar instrument simulator and subcolumn generator for large-scale models
Israel Silber, Robert C. Jackson, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Johannes Verlinde, and Jiachen Ding
Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022,https://doi.org/10.5194/gmd-15-901-2022, 2022
Short summary
The prevalence of precipitation from polar supercooled clouds
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021,https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
Keith M. Hines, David H. Bromwich, Sheng-Hung Wang, Israel Silber, Johannes Verlinde, and Dan Lubin
Atmos. Chem. Phys., 19, 12431–12454, https://doi.org/10.5194/acp-19-12431-2019,https://doi.org/10.5194/acp-19-12431-2019, 2019
Short summary
(GO)2-SIM: a GCM-oriented ground-observation forward-simulator framework for objective evaluation of cloud and precipitation phase
Katia Lamer, Ann M. Fridlind, Andrew S. Ackerman, Pavlos Kollias, Eugene E. Clothiaux, and Maxwell Kelley
Geosci. Model Dev., 11, 4195–4214, https://doi.org/10.5194/gmd-11-4195-2018,https://doi.org/10.5194/gmd-11-4195-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024,https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary

Cited articles

Aydin, K. and Seliga, T. A.: Radar Polarimetric Backscattering Properties of Conical Graupel, J. Atmos. Sci., 41, 1887–1892, https://doi.org/10.1175/1520-0469(1984)041<1887:RPBPOC>2.0.CO;2, 1984.
Aydin, K. and Singh, J.: Cloud Ice Crystal Classification Using a 95 GHz Polarimetric Radar, J. Atmos. Ocean. Tech., 21, 1679–1688, https://doi.org/10.1175/JTECH1671.1, 2004.
Aydin, K. and Tang, C.: Relationships between IWC and Polarimetric Radar Measurands at 94 and 220 GHz for Hexagonal Columns and Plates, J. Atmos. Ocean. Tech., 14, 1055–1063, https://doi.org/10.1175/1520-0426(1997)014<1055:RBIAPR>2.0.CO;2, 1997.
Aydin, K., Verlinde, J., Clothiaux, E. E., Lu, Y., Jiang, Z., and Botta, G.: Polarimetric scattering database for non-spherical ice particles at microwave wavelengths. Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, Data set available at: https://doi.org/10.5439/1258029, 2016.
Battaglia, A., Westbrook, C. D., Kneifel, S., Kollias, P., Humpage, N., Löhnert, U., Tyynelä, J., and Petty, G. W.: G band atmospheric radars: new frontiers in cloud physics, Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, 2014.
Download
Short summary
The database contains the complete (polarimetric) scattering information for different types of ice particles at different incident and scattered radiation directions at four microwave wavelengths. These results are useful for understanding the dependence of ice-particle scattering properties on ice-particle orientation with respect to the incident and scattered radiation. It is also useful in ice-property retrievals, radar forward simulation.