Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5461-2016
https://doi.org/10.5194/amt-9-5461-2016
Research article
 | 
14 Nov 2016
Research article |  | 14 Nov 2016

Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

Emma C. Turner, Stafford Withington, David A. Newnham, Peter Wadhams, Anna E. Jones, and Robin Clancy

Related authors

Global evaluation of fast radiative transfer model coefficients for early meteorological satellite sensors
Bruna Barbosa Silveira, Emma Catherine Turner, and Jérôme Vidot
Atmos. Meas. Tech., 17, 1279–1296, https://doi.org/10.5194/amt-17-1279-2024,https://doi.org/10.5194/amt-17-1279-2024, 2024
Short summary
A new gas absorption optical depth parameterisation for RTTOV version 13
James Hocking, Jérôme Vidot, Pascal Brunel, Pascale Roquet, Bruna Silveira, Emma Turner, and Cristina Lupu
Geosci. Model Dev., 14, 2899–2915, https://doi.org/10.5194/gmd-14-2899-2021,https://doi.org/10.5194/gmd-14-2899-2021, 2021
Short summary
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Quantitative estimate of several sources of uncertainty in drone-based methane emission measurements
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan J. Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
Atmos. Meas. Tech., 18, 1301–1324, https://doi.org/10.5194/amt-18-1301-2025,https://doi.org/10.5194/amt-18-1301-2025, 2025
Short summary
Implementation and application of an improved phase spectrum determination scheme for Fourier transform spectrometry
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025,https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012
Anderson, G. P., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E. P.: AFGL atmospheric constituent profiles (0–120 km), Tech. rep., DTIC Document, 1986.
Arnold, K., Ade, P., Anthony, A., Aubin, F., Boettger, D., Borrill, J., Cantalupo, C., Dobbs, M., Errard, J., and Flanigan, D.: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, in: Proc. SPIE, vol. 7741, 77411E, 2010.
Benford, D., Hunter, T., and Phillips, T.: Noise equivalent power of background limited thermal detectors at submillimeter wavelengths, Int. J. Infrared Milli., 19, 931–938, 1998.
Buehler, S., Eyring, V., and Kuellmann, H.: The impact of continuum emissions in the mm and sub-mm spectral range, CONTRACTOR REPORT-EUROPEAN SPACE AGENCY CR P, 1–230, 1996.
Download
Short summary
Observations of the submillimetre part of the electromagnetic spectrum have previously been the domain of the astronomical community. However, new technological advances in the superconducting detectors field are offering the atmospheric sciences unexplored opportunities to perform useful spectroscopy in this region, exploiting existing radio telescope sites. Example simulations at six sites are presented for HBr, HOBr, HO2 and N2O showing the need for broad high-resolution measurements.
Share