Articles | Volume 10, issue 4
Atmos. Meas. Tech., 10, 1299–1312, 2017
https://doi.org/10.5194/amt-10-1299-2017
Atmos. Meas. Tech., 10, 1299–1312, 2017
https://doi.org/10.5194/amt-10-1299-2017

Research article 03 Apr 2017

Research article | 03 Apr 2017

A European-wide 222radon and 222radon progeny comparison study

Dominik Schmithüsen et al.

Related authors

Assessment of 222radon progeny loss in long tubing based on static filter measurements in the laboratory and in the field
Ingeborg Levin, Dominik Schmithüsen, and Alex Vermeulen
Atmos. Meas. Tech., 10, 1313–1321, https://doi.org/10.5194/amt-10-1313-2017,https://doi.org/10.5194/amt-10-1313-2017, 2017
Short summary
A process-based 222radon flux map for Europe and its comparison to long-term observations
U. Karstens, C. Schwingshackl, D. Schmithüsen, and I. Levin
Atmos. Chem. Phys., 15, 12845–12865, https://doi.org/10.5194/acp-15-12845-2015,https://doi.org/10.5194/acp-15-12845-2015, 2015
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Field testing two flux footprint models
Trevor W. Coates, Monzurul Alam, Thomas K. Flesch, and Guillermo Hernandez-Ramirez
Atmos. Meas. Tech., 14, 7147–7152, https://doi.org/10.5194/amt-14-7147-2021,https://doi.org/10.5194/amt-14-7147-2021, 2021
Short summary
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021,https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Evaluating uncertainty in sensor networks for urban air pollution insights
Daniel R. Peters, Olalekan A. M. Popoola, Roderic L. Jones, Nicholas A. Martin, Jim Mills, Elizabeth R. Fonseca, Amy Stidworthy, Ella Forsyth, David Carruthers, Megan Dupuy-Todd, Felicia Douglas, Katie Moore, Rishabh U. Shah, Lauren E. Padilla, and Ramón A. Alvarez
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-210,https://doi.org/10.5194/amt-2021-210, 2021
Revised manuscript accepted for AMT
Short summary
Evaluation and Application of Precipitable Water Vapor Product from MERSI-II onboard the Fengyun-3D Satellite
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-236,https://doi.org/10.5194/amt-2021-236, 2021
Revised manuscript accepted for AMT
Short summary
Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021,https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary

Cited articles

Biraud, S.: Vers la régionalisation des puits et sources des composes à effet de serre: analyse de la variabilité synoptique à l'observatoire de Mace Head, Irlande, PhD Thesis, University of Paris VII, France, 2000.
Capuana, C.-A.: Calibration of ionization chambers and comparison of two monitors for radon measurement, BA Thesis, Institut für Umweltphysik, Heidelberg University, 2016 (in German).
Chambers, S., Williams, A. G., Zahorowski, W., Griffiths, A. D., and Crawford, J.: Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere, Tellus B, 63, 843–859, 2011.
Cuntz, M.: The Heidelberg 222Rn monitor: Calibration, optimisation, application, Diploma Thesis, Institut für Umweltphysik, Heidelberg University, Germany, 1997.
Dörr, H., Kromer, B., Levin, I., Münnich, K. O., and Volpp, H. J.: CO2 and Radon-222 as tracers for atmospheric transport, J. Geophys. Res., 88, 1309–1313, 1983.
Short summary
A European-wide 222radon/222radon progeny comparison study has been conducted at nine measurement stations in order to determine differences between existing 222radon instrumentation and atmospheric data sets, respectively. Mean differences up to 45 % were found between monitors. These differences need to be taken into account if the data shall serve for quantitative regional atmospheric transport model validation.