Articles | Volume 10, issue 4
https://doi.org/10.5194/amt-10-1539-2017
https://doi.org/10.5194/amt-10-1539-2017
Research article
 | 
24 Apr 2017
Research article |  | 24 Apr 2017

Updated MISR dark water research aerosol retrieval algorithm – Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

James A. Limbacher and Ralph A. Kahn

Related authors

The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022,https://doi.org/10.5194/amt-15-6865-2022, 2022
Short summary
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022,https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020,https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary
Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product
Michael J. Garay, Marcin L. Witek, Ralph A. Kahn, Felix C. Seidel, James A. Limbacher, Michael A. Bull, David J. Diner, Earl G. Hansen, Olga V. Kalashnikova, Huikyo Lee, Abigail M. Nastan, and Yan Yu
Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020,https://doi.org/10.5194/amt-13-593-2020, 2020
Short summary
Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters
James A. Limbacher and Ralph A. Kahn
Atmos. Meas. Tech., 12, 675–689, https://doi.org/10.5194/amt-12-675-2019,https://doi.org/10.5194/amt-12-675-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improvements in aerosol layer height retrievals from TROPOMI oxygen A-band measurements by surface albedo fitting in optimal estimation
Martin de Graaf, Maarten Sneep, Mark ter Linden, L. Gijsbert Tilstra, David P. Donovan, Gerd-Jan van Zadelhoff, and J. Pepijn Veefkind
Atmos. Meas. Tech., 18, 2553–2571, https://doi.org/10.5194/amt-18-2553-2025,https://doi.org/10.5194/amt-18-2553-2025, 2025
Short summary
Using neural networks for near-real-time aerosol retrievals from OMPS Limb Profiler measurements
Michael D. Himes, Ghassan Taha, Daniel Kahn, Tong Zhu, and Natalya A. Kramarova
Atmos. Meas. Tech., 18, 2523–2536, https://doi.org/10.5194/amt-18-2523-2025,https://doi.org/10.5194/amt-18-2523-2025, 2025
Short summary
Retrieval algorithm for aerosol effective height from the Geostationary Environment Monitoring Spectrometer (GEMS)
Sang Seo Park, Jhoon Kim, Yeseul Cho, Hanlim Lee, Junsung Park, Dong-Won Lee, Won-Jin Lee, and Deok-Rae Kim
Atmos. Meas. Tech., 18, 2241–2259, https://doi.org/10.5194/amt-18-2241-2025,https://doi.org/10.5194/amt-18-2241-2025, 2025
Short summary
ACDL/DQ-1 calibration algorithms – Part 1: Nighttime 532 nm polarization and the high-spectral-resolution channel
Fanqian Meng, Junwu Tang, Guangyao Dai, Wenrui Long, Kangwen Sun, Zhiyu Zhang, Xiaoquan Song, Jiqiao Liu, Weibiao Chen, and Songhua Wu
Atmos. Meas. Tech., 18, 2021–2039, https://doi.org/10.5194/amt-18-2021-2025,https://doi.org/10.5194/amt-18-2021-2025, 2025
Short summary
Aerosol composition retrieval from a combination of three different spaceborne instruments: information content analysis
Ulrike Stöffelmair, Thomas Popp, Marco Vountas, and Hartmut Bösch
Atmos. Meas. Tech., 18, 2005–2020, https://doi.org/10.5194/amt-18-2005-2025,https://doi.org/10.5194/amt-18-2005-2025, 2025
Short summary

Cited articles

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011.
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, 2006.
Barrot, G., Mangin, A., and Pinnock, S.: GlobColour Product User Guide, available at: http://www.globcolour.info (last access: 31 January 2014), 2010.
Bruegge, C. J., Diner, D. J., Korechoff, R. P., and Lee, M.: MISR Level 1 Radiance Scaling and Conditioning Algorithm Theoretical Basis. Jet Propulsion Laboratory JPL D-11507, available at: https://eospso.nasa.gov/sites/default/files/atbd/atbd-misr-01.pdf (last access: 13 April 2017), 1999.
Short summary
Aerosol amount and type affect the “atmospheric correction” needed to derive ocean surface chlorophyll a concentration (Chl) from satellite remote sensing and, conversely, the ocean surface representation affects aerosol retrieval products. We introduce a coupled atmosphere-surface retrieval for Multi-angle Imaging SpectroRadiometer observations over dark water aimed at improving both aerosol and Chl results. We also refine the MISR calibration, critical to achieving high-quality retrievals.
Share