Articles | Volume 10, issue 4
Atmos. Meas. Tech., 10, 1539–1555, 2017
https://doi.org/10.5194/amt-10-1539-2017
Atmos. Meas. Tech., 10, 1539–1555, 2017
https://doi.org/10.5194/amt-10-1539-2017
Research article
24 Apr 2017
Research article | 24 Apr 2017

Updated MISR dark water research aerosol retrieval algorithm – Part 1: Coupled 1.1 km ocean surface chlorophyll a retrievals with empirical calibration corrections

James A. Limbacher and Ralph A. Kahn

Related authors

The New MISR Research Aerosol Retrieval Algorithm: A Multi-Angle, Multi-Spectral, Bounded-Variable Least Squares Retrieval of Aerosol Particle Properties over Both Land and Water
James A. Limbacher, Ralph A. Kahn, and Jaehwa Lee
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-95,https://doi.org/10.5194/amt-2022-95, 2022
Preprint under review for AMT
Short summary
Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-863,https://doi.org/10.5194/acp-2021-863, 2021
Revised manuscript accepted for ACP
Short summary
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020,https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary
Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product
Michael J. Garay, Marcin L. Witek, Ralph A. Kahn, Felix C. Seidel, James A. Limbacher, Michael A. Bull, David J. Diner, Earl G. Hansen, Olga V. Kalashnikova, Huikyo Lee, Abigail M. Nastan, and Yan Yu
Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020,https://doi.org/10.5194/amt-13-593-2020, 2020
Short summary
Updated MISR over-water research aerosol retrieval algorithm – Part 2: A multi-angle aerosol retrieval algorithm for shallow, turbid, oligotrophic, and eutrophic waters
James A. Limbacher and Ralph A. Kahn
Atmos. Meas. Tech., 12, 675–689, https://doi.org/10.5194/amt-12-675-2019,https://doi.org/10.5194/amt-12-675-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of UVB aerosol extinction profiles from the ground-based Langley Mobile Ozone Lidar (LMOL) system
Liqiao Lei, Timothy A. Berkoff, Guillaume Gronoff, Jia Su, Amin R. Nehrir, Yonghua Wu, Fred Moshary, and Shi Kuang
Atmos. Meas. Tech., 15, 2465–2478, https://doi.org/10.5194/amt-15-2465-2022,https://doi.org/10.5194/amt-15-2465-2022, 2022
Short summary
Enhancing MAX-DOAS atmospheric state retrievals by multispectral polarimetry – studies using synthetic data
Jan-Lukas Tirpitz, Udo Frieß, Robert Spurr, and Ulrich Platt
Atmos. Meas. Tech., 15, 2077–2098, https://doi.org/10.5194/amt-15-2077-2022,https://doi.org/10.5194/amt-15-2077-2022, 2022
Short summary
Assessing the benefits of Imaging Infrared Radiometer observations for the CALIOP version 4 cloud and aerosol discrimination algorithm
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022,https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars
Marco Di Paolantonio, Davide Dionisi, and Gian Luigi Liberti
Atmos. Meas. Tech., 15, 1217–1231, https://doi.org/10.5194/amt-15-1217-2022,https://doi.org/10.5194/amt-15-1217-2022, 2022
Short summary
Aerosol optical characteristics in the urban area of Rome, Italy, and their impact on the UV index
Monica Campanelli, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Anna Maria Iannarelli, Rei Kudo, Gabriele Fasano, Giampietro Casasanta, Luca Tofful, Marco Cacciani, Paolo Sanò, and Stefano Dietrich
Atmos. Meas. Tech., 15, 1171–1183, https://doi.org/10.5194/amt-15-1171-2022,https://doi.org/10.5194/amt-15-1171-2022, 2022
Short summary

Cited articles

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., and Gombos, D.: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications, B. Am. Meteorol. Soc., 92, 157–174, https://doi.org/10.1175/2010BAMS2946.1, 2011.
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit validation of ocean color satellite data products, Remote Sens. Environ., 102, 12–23, 2006.
Barrot, G., Mangin, A., and Pinnock, S.: GlobColour Product User Guide, available at: http://www.globcolour.info (last access: 31 January 2014), 2010.
Bruegge, C. J., Diner, D. J., Korechoff, R. P., and Lee, M.: MISR Level 1 Radiance Scaling and Conditioning Algorithm Theoretical Basis. Jet Propulsion Laboratory JPL D-11507, available at: https://eospso.nasa.gov/sites/default/files/atbd/atbd-misr-01.pdf (last access: 13 April 2017), 1999.
Short summary
Aerosol amount and type affect the “atmospheric correction” needed to derive ocean surface chlorophyll a concentration (Chl) from satellite remote sensing and, conversely, the ocean surface representation affects aerosol retrieval products. We introduce a coupled atmosphere-surface retrieval for Multi-angle Imaging SpectroRadiometer observations over dark water aimed at improving both aerosol and Chl results. We also refine the MISR calibration, critical to achieving high-quality retrievals.