Articles | Volume 10, issue 11
https://doi.org/10.5194/amt-10-4317-2017
https://doi.org/10.5194/amt-10-4317-2017
Research article
 | 
14 Nov 2017
Research article |  | 14 Nov 2017

Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI

Johan Strandgren, Jennifer Fricker, and Luca Bugliaro

Related authors

The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318, https://doi.org/10.5194/acp-21-4285-2021,https://doi.org/10.5194/acp-21-4285-2021, 2021
Short summary
Towards spaceborne monitoring of localized CO2 emissions: an instrument concept and first performance assessment
Johan Strandgren, David Krutz, Jonas Wilzewski, Carsten Paproth, Ilse Sebastian, Kevin R. Gurney, Jianming Liang, Anke Roiger, and André Butz
Atmos. Meas. Tech., 13, 2887–2904, https://doi.org/10.5194/amt-13-2887-2020,https://doi.org/10.5194/amt-13-2887-2020, 2020
Short summary
Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO2
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745, https://doi.org/10.5194/amt-13-731-2020,https://doi.org/10.5194/amt-13-731-2020, 2020
Short summary
Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks
Johan Strandgren, Luca Bugliaro, Frank Sehnke, and Leon Schröder
Atmos. Meas. Tech., 10, 3547–3573, https://doi.org/10.5194/amt-10-3547-2017,https://doi.org/10.5194/amt-10-3547-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
Atmos. Meas. Tech., 18, 1499–1517, https://doi.org/10.5194/amt-18-1499-2025,https://doi.org/10.5194/amt-18-1499-2025, 2025
Short summary
Evaluating parallax and shadow correction methods for global horizontal irradiance retrievals from Meteosat SEVIRI
Job I. Wiltink, Hartwig Deneke, Chiel C. van Heerwaarden, and Jan Fokke Meirink
EGUsphere, https://doi.org/10.5194/egusphere-2024-4139,https://doi.org/10.5194/egusphere-2024-4139, 2025
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
Atmos. Meas. Tech., 18, 1115–1134, https://doi.org/10.5194/amt-18-1115-2025,https://doi.org/10.5194/amt-18-1115-2025, 2025
Short summary
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
Atmos. Meas. Tech., 18, 981–1011, https://doi.org/10.5194/amt-18-981-2025,https://doi.org/10.5194/amt-18-981-2025, 2025
Short summary
Optimizing cloud optical parameterizations in RTTOV for data assimilation of satellite visible reflectance data: an assessment using observed and synthetic images
Yongbo Zhou, Tianrui Cao, and Lijian Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-242,https://doi.org/10.5194/egusphere-2025-242, 2025
Short summary

Cited articles

Ackerman, S. A., Smith, W. L., Revercomb, H. E., and Spinhirne, J. D.: The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12 µm window, Mon. Weather Rev., 118, 2377–2388, https://doi.org/10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2, 1990.
Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter, M., and Thomas, W.: Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624, https://doi.org/10.5194/acp-11-5603-2011, 2011.
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Lidar Cloud Layer Data, version 3.01, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC), https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmCLay-Prov-V3-01_L2-003.01, 2015a.
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Lidar Cloud Layer Data, version 3.02, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC), https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmCLay-Prov-V3-02_L2-003.02, 2015b.
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Lidar Aerosol Layer Data, version 3.01, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC), https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L2_05kmALay-Prov-V3-01_L2-003.01, 2015c.
Download
Short summary
We characterise the the performance of a set of artificial neural networks used for the remote sensing of cirrus clouds from the geostationary Meteosat Second Generation satellites. The retrievals show little interference with the underlying land surface type as well as with possible liquid water clouds or aerosol layers below the cirrus cloud. We also characterise the retrievals as a funtion of optical thickness and top height and gain better understanding of the retrival uncertainties of CiPS
Share