Articles | Volume 10, issue 11
Research article
14 Nov 2017
Research article |  | 14 Nov 2017

Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI

Johan Strandgren, Jennifer Fricker, and Luca Bugliaro

Related authors

The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON
Harald Rybka, Ulrike Burkhardt, Martin Köhler, Ioanna Arka, Luca Bugliaro, Ulrich Görsdorf, Ákos Horváth, Catrin I. Meyer, Jens Reichardt, Axel Seifert, and Johan Strandgren
Atmos. Chem. Phys., 21, 4285–4318,,, 2021
Short summary
Towards spaceborne monitoring of localized CO2 emissions: an instrument concept and first performance assessment
Johan Strandgren, David Krutz, Jonas Wilzewski, Carsten Paproth, Ilse Sebastian, Kevin R. Gurney, Jianming Liang, Anke Roiger, and André Butz
Atmos. Meas. Tech., 13, 2887–2904,,, 2020
Short summary
Spectral sizing of a coarse-spectral-resolution satellite sensor for XCO2
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745,,, 2020
Short summary
Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks
Johan Strandgren, Luca Bugliaro, Frank Sehnke, and Leon Schröder
Atmos. Meas. Tech., 10, 3547–3573,,, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000,,, 2023
Short summary
Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation
Kumar Abhijeet, Thota Narayana Rao, Nidamanuri Rama Rao, and Kasimahanthi Amar Jyothi
Atmos. Meas. Tech., 16, 871–888,,, 2023
Short summary
Validation of the Cloud_CCI cloud products in the Arctic
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech. Discuss.,,, 2023
Revised manuscript accepted for AMT
Short summary
Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome C (Antarctica)
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258,,, 2022
Short summary
Sizing ice hydrometeor populations using the dual-wavelength radar ratio
Sergey Y. Matrosov, Alexei Korolev, Mengistu Wolde, and Cuong Nguyen
Atmos. Meas. Tech., 15, 6373–6386,,, 2022
Short summary

Cited articles

Ackerman, S. A., Smith, W. L., Revercomb, H. E., and Spinhirne, J. D.: The 27–28 October 1986 FIRE IFO cirrus case study: spectral properties of cirrus clouds in the 8–12 µm window, Mon. Weather Rev., 118, 2377–2388,<2377:TOFICC>2.0.CO;2, 1990.
Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter, M., and Thomas, W.: Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624,, 2011.
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Lidar Cloud Layer Data, version 3.01, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC),, 2015a.
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Lidar Cloud Layer Data, version 3.02, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC),, 2015b.
CALIPSO Science Team: CALIPSO/CALIOP Level 2, Lidar Aerosol Layer Data, version 3.01, Hampton, VA, USA: NASA Atmospheric Science Data Center (ASDC),, 2015c.
Short summary
We characterise the the performance of a set of artificial neural networks used for the remote sensing of cirrus clouds from the geostationary Meteosat Second Generation satellites. The retrievals show little interference with the underlying land surface type as well as with possible liquid water clouds or aerosol layers below the cirrus cloud. We also characterise the retrievals as a funtion of optical thickness and top height and gain better understanding of the retrival uncertainties of CiPS