Articles | Volume 10, issue 12
Atmos. Meas. Tech., 10, 4895–4903, 2017
https://doi.org/10.5194/amt-10-4895-2017
Atmos. Meas. Tech., 10, 4895–4903, 2017
https://doi.org/10.5194/amt-10-4895-2017

Research article 14 Dec 2017

Research article | 14 Dec 2017

Variability of the Brunt–Väisälä frequency at the OH* layer height

Sabine Wüst et al.

Related authors

Variability of the Brunt–Väisälä frequency at the OH-airglow layer height at low and midlatitudes
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020,https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020,https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary
Observations of OH airglow from ground, aircraft, and satellite: investigation of wave-like structures before a minor stratospheric warming
Sabine Wüst, Carsten Schmidt, Patrick Hannawald, Michael Bittner, Martin G. Mlynczak, and James M. Russell III
Atmos. Chem. Phys., 19, 6401–6418, https://doi.org/10.5194/acp-19-6401-2019,https://doi.org/10.5194/acp-19-6401-2019, 2019
Short summary
Seasonal and intra-diurnal variability of small-scale gravity waves in OH airglow at two Alpine stations
Patrick Hannawald, Carsten Schmidt, René Sedlak, Sabine Wüst, and Michael Bittner
Atmos. Meas. Tech., 12, 457–469, https://doi.org/10.5194/amt-12-457-2019,https://doi.org/10.5194/amt-12-457-2019, 2019
Short summary
Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018,https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Linking rain into ice microphysics across the melting layer in stratiform rain: a closure study
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021,https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Classification of lidar measurements using supervised and unsupervised machine learning methods
Ghazal Farhani, Robert J. Sica, and Mark Joseph Daley
Atmos. Meas. Tech., 14, 391–402, https://doi.org/10.5194/amt-14-391-2021,https://doi.org/10.5194/amt-14-391-2021, 2021
Short summary
The development of rainfall retrievals from radar at Darwin
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021,https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Retrieved wind speed from the Orbiting Carbon Observatory-2
Robert R. Nelson, Annmarie Eldering, David Crisp, Aronne J. Merrelli, and Christopher W. O'Dell
Atmos. Meas. Tech., 13, 6889–6899, https://doi.org/10.5194/amt-13-6889-2020,https://doi.org/10.5194/amt-13-6889-2020, 2020
Short summary
Probabilistic analysis of ambiguities in radar echo direction of arrival from meteors
Daniel Kastinen and Johan Kero
Atmos. Meas. Tech., 13, 6813–6835, https://doi.org/10.5194/amt-13-6813-2020,https://doi.org/10.5194/amt-13-6813-2020, 2020
Short summary

Cited articles

Andrews, D. G.: An introduction to atmospheric physics, Cambridge University Press, 2000.
Baker, D. J. and Stair Jr., A. T.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr., 37, 611–622, 1988.
Bills, R. E. and Gardner, C. S.: Lidar observations of the mesopause region temperature structure at Urbana, J. Geophys. Res., 98, 1011–1021, https://doi.org/10.1029/92JD02167, 1993.
Bremer, J. and Peters, D.: Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere, J. Atmos. Sol.-Terr. Phys., 70, 1473–1481, 2008.
Download
Short summary
In the Alpine region, the most dense subnetwork of identical NDMC (Network for the Detection of Mesospheric Change) instruments can be found. With these instruments the mesopause temperature is derived each night. The data can be used for the investigation of the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves, provided that the so-called Brunt–Väisälä frequency is known. Information about the variability of this parameter is provided here.