Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 10, issue 2
Atmos. Meas. Tech., 10, 695–708, 2017
https://doi.org/10.5194/amt-10-695-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 10, 695–708, 2017
https://doi.org/10.5194/amt-10-695-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Mar 2017

Research article | 03 Mar 2017

Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer

Simon Ruske et al.

Related authors

Machine learning for improved data analysis of biological aerosol using the WIBS
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203–6230, https://doi.org/10.5194/amt-11-6203-2018,https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Assessing the accuracy of low-cost optical particle sensors using a physics-based approach
David H. Hagan and Jesse H. Kroll
Atmos. Meas. Tech., 13, 6343–6355, https://doi.org/10.5194/amt-13-6343-2020,https://doi.org/10.5194/amt-13-6343-2020, 2020
Short summary
Comparison of dimension reduction techniques in the analysis of mass spectrometry data
Sini Isokääntä, Eetu Kari, Angela Buchholz, Liqing Hao, Siegfried Schobesberger, Annele Virtanen, and Santtu Mikkonen
Atmos. Meas. Tech., 13, 2995–3022, https://doi.org/10.5194/amt-13-2995-2020,https://doi.org/10.5194/amt-13-2995-2020, 2020
Short summary
Development of a new correction algorithm applicable to any filter-based absorption photometer
Hanyang Li, Gavin R. McMeeking, and Andrew A. May
Atmos. Meas. Tech., 13, 2865–2886, https://doi.org/10.5194/amt-13-2865-2020,https://doi.org/10.5194/amt-13-2865-2020, 2020
Short summary
Chemical discrimination of the particulate and gas phases of miniCAST exhausts using a two-filter collection method
Linh Dan Ngo, Dumitru Duca, Yvain Carpentier, Jennifer A. Noble, Raouf Ikhenazene, Marin Vojkovic, Cornelia Irimiea, Ismael K. Ortega, Guillaume Lefevre, Jérôme Yon, Alessandro Faccinetto, Eric Therssen, Michael Ziskind, Bertrand Chazallon, Claire Pirim, and Cristian Focsa
Atmos. Meas. Tech., 13, 951–967, https://doi.org/10.5194/amt-13-951-2020,https://doi.org/10.5194/amt-13-951-2020, 2020
Short summary
External and internal cloud condensation nuclei (CCN) mixtures: controlled laboratory studies of varying mixing states
Diep Vu, Shaokai Gao, Tyler Berte, Mary Kacarab, Qi Yao, Kambiz Vafai, and Akua Asa-Awuku
Atmos. Meas. Tech., 12, 4277–4289, https://doi.org/10.5194/amt-12-4277-2019,https://doi.org/10.5194/amt-12-4277-2019, 2019
Short summary

Cited articles

Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn., 20, 273–297, 1995.
Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J., Westbrook, C., Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher, M. W., Williams, P., Trembath, J., Cui, Z., and Blyth, A.: Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling, Atmos. Chem. Phys., 12, 4963–4985, https://doi.org/10.5194/acp-12-4963-2012, 2012.
Crawford, I., Robinson, N. H., Flynn, M. J., Foot, V. E., Gallagher, M. W., Huffman, J. A., Stanley, W. R., and Kaye, P. H.: Characterisation of bioaerosol emissions from a Colorado pine forest: results from the BEACHON-RoMBAS experiment, Atmos. Chem. Phys., 14, 8559–8578, https://doi.org/10.5194/acp-14-8559-2014, 2014.
Publications Copernicus
Download
Short summary
Particles such as bacteria, pollen and fungal spores have important implications within the environment and public health sectors. Here we evaluate the performance of various different methods for distinguishing between these different types of particles using a new instrument. We demonstrate that there may be better alternatives to the currently used methods which can be further investigated in future research.
Particles such as bacteria, pollen and fungal spores have important implications within the...
Citation