Articles | Volume 10, issue 2
https://doi.org/10.5194/amt-10-695-2017
https://doi.org/10.5194/amt-10-695-2017
Research article
 | 
03 Mar 2017
Research article |  | 03 Mar 2017

Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer

Simon Ruske, David O. Topping, Virginia E. Foot, Paul H. Kaye, Warren R. Stanley, Ian Crawford, Andrew P. Morse, and Martin W. Gallagher

Related authors

Machine learning for improved data analysis of biological aerosol using the WIBS
Simon Ruske, David O. Topping, Virginia E. Foot, Andrew P. Morse, and Martin W. Gallagher
Atmos. Meas. Tech., 11, 6203–6230, https://doi.org/10.5194/amt-11-6203-2018,https://doi.org/10.5194/amt-11-6203-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models
Radhika A. Chipade and Mehul R. Pandya
Atmos. Meas. Tech., 16, 5443–5459, https://doi.org/10.5194/amt-16-5443-2023,https://doi.org/10.5194/amt-16-5443-2023, 2023
Short summary
A new software toolkit for optical apportionment of carbonaceous aerosol
Tommaso Isolabella, Vera Bernardoni, Alessandro Bigi, Marco Brunoldi, Federico Mazzei, Franco Parodi, Paolo Prati, VIrginia Vernocchi, and Dario Massabò
EGUsphere, https://doi.org/10.5194/egusphere-2023-1936,https://doi.org/10.5194/egusphere-2023-1936, 2023
Short summary
An extraction method for nitrogen isotope measurement of ammonium in a low-concentration environment
Alexis Lamothe, Joel Savarino, Patrick Ginot, Lison Soussaintjean, Elsa Gautier, Pete D. Akers, Nicolas Caillon, and Joseph Erbland
Atmos. Meas. Tech., 16, 4015–4030, https://doi.org/10.5194/amt-16-4015-2023,https://doi.org/10.5194/amt-16-4015-2023, 2023
Short summary
Quantifying Functional Group Compositions of Household Fuel Burning Emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-90,https://doi.org/10.5194/amt-2023-90, 2023
Revised manuscript accepted for AMT
Short summary
Estimation of secondary organic aerosol formation parameters for the volatility basis set combining thermodenuder, isothermal dilution, and yield measurements
Petro Uruci, Dontavious Sippial, Anthoula Drosatou, and Spyros N. Pandis
Atmos. Meas. Tech., 16, 3155–3172, https://doi.org/10.5194/amt-16-3155-2023,https://doi.org/10.5194/amt-16-3155-2023, 2023
Short summary

Cited articles

Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, 1996.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn., 20, 273–297, 1995.
Crawford, I., Bower, K. N., Choularton, T. W., Dearden, C., Crosier, J., Westbrook, C., Capes, G., Coe, H., Connolly, P. J., Dorsey, J. R., Gallagher, M. W., Williams, P., Trembath, J., Cui, Z., and Blyth, A.: Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling, Atmos. Chem. Phys., 12, 4963–4985, https://doi.org/10.5194/acp-12-4963-2012, 2012.
Crawford, I., Robinson, N. H., Flynn, M. J., Foot, V. E., Gallagher, M. W., Huffman, J. A., Stanley, W. R., and Kaye, P. H.: Characterisation of bioaerosol emissions from a Colorado pine forest: results from the BEACHON-RoMBAS experiment, Atmos. Chem. Phys., 14, 8559–8578, https://doi.org/10.5194/acp-14-8559-2014, 2014.
Download
Short summary
Particles such as bacteria, pollen and fungal spores have important implications within the environment and public health sectors. Here we evaluate the performance of various different methods for distinguishing between these different types of particles using a new instrument. We demonstrate that there may be better alternatives to the currently used methods which can be further investigated in future research.