Articles | Volume 11, issue 5
Atmos. Meas. Tech., 11, 3177–3196, 2018
https://doi.org/10.5194/amt-11-3177-2018
Atmos. Meas. Tech., 11, 3177–3196, 2018
https://doi.org/10.5194/amt-11-3177-2018

Research article 01 Jun 2018

Research article | 01 Jun 2018

Neural network cloud top pressure and height for MODIS

Nina Håkansson et al.

Related authors

A neural network approach to estimating a posteriori distributions of Bayesian retrieval problems
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627–4643, https://doi.org/10.5194/amt-11-4627-2018,https://doi.org/10.5194/amt-11-4627-2018, 2018
Short summary
Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record
Karl-Göran Karlsson and Nina Håkansson
Atmos. Meas. Tech., 11, 633–649, https://doi.org/10.5194/amt-11-633-2018,https://doi.org/10.5194/amt-11-633-2018, 2018
Short summary
CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017,https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Comparison of MODIS and VIIRS cloud properties with ARM ground-based observations over Finland
Moa K. Sporre, Ewan J. O'Connor, Nina Håkansson, Anke Thoss, Erik Swietlicki, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 3193–3203, https://doi.org/10.5194/amt-9-3193-2016,https://doi.org/10.5194/amt-9-3193-2016, 2016
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-306,https://doi.org/10.5194/amt-2021-306, 2021
Revised manuscript accepted for AMT
Short summary
Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021,https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks
Charles H. White, Andrew K. Heidinger, and Steven A. Ackerman
Atmos. Meas. Tech., 14, 3371–3394, https://doi.org/10.5194/amt-14-3371-2021,https://doi.org/10.5194/amt-14-3371-2021, 2021
Short summary
Comparing scattering ratio products retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations: sensitivity, comparability, and temporal evolution
Artem Feofilov, Hélène Chepfer, Vincent Noel, Rodrigo Guzman, Cyprien Gindre, and Marjolaine Chiriaco
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-96,https://doi.org/10.5194/amt-2021-96, 2021
Revised manuscript accepted for AMT
Short summary
The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021,https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary

Cited articles

Ackerman, S., Menzel, P., and Frey, R.: MODIS Atmosphere L2 Cloud Product (06_L2), https://doi.org/10.5067/MODIS/MYD06_L2.006, 2015. a, b
Baum, B. A., Menzel, W. P., Frey, R. A., Tobin, D. C., Holz, R. E., Ackerman, S. A., Heidinger, A. K., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 51, 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. a, b, c
Bickel, D. R.: Robust Estimators of the Mode and Skewness of Continuous Data, Comput. Stat. Data Anal., 39, 153–163, https://doi.org/10.1016/S0167-9473(01)00057-3, 2002. a
Cotter, A., Shamir, O., Srebro, N., and Sridharan, K.: Better Mini-Batch Algorithms via Accelerated Gradient Methods, in: Advances in Neural Information Processing Systems 24, edited by: Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., 1647–1655, Curran Associates, Inc., available at: http://papers.nips.cc/paper/4432-better-mini-batch-algorithms-via-accelerated-gradient-methods.pdf, 2011. a
Derrien, M., Lavanant, L., and Le Gleau, H.: Retrieval of the cloud top temperature of semi-transparent clouds with AVHRR, in: Proceedings of the IRS'88, 199–202, Deepak Publ., Hampton, Lille, France, 1988. a
Download
Short summary
In this paper a new algorithm for cloud top height retrieval from imager instruments like MODIS is presented. It uses artificial neural networks and reduces the mean absolute error by 32 % compared to two other operational cloud height algorithms. This means that improved cloud height retrieval for nowcasting, as input to models and in cloud climatologies is possible.