Articles | Volume 11, issue 9
Atmos. Meas. Tech., 11, 5181–5198, 2018
https://doi.org/10.5194/amt-11-5181-2018
Atmos. Meas. Tech., 11, 5181–5198, 2018
https://doi.org/10.5194/amt-11-5181-2018
Research article
12 Sep 2018
Research article | 12 Sep 2018

Characterisation of the melting layer variability in an Alpine valley based on polarimetric X-band radar scans

Floor van den Heuvel et al.

Related authors

Learning about the vertical structure of radar reflectivity using hydrometeor classes and neural networks in the Swiss Alps
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020,https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders
Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke
Atmos. Meas. Tech., 15, 4531–4545, https://doi.org/10.5194/amt-15-4531-2022,https://doi.org/10.5194/amt-15-4531-2022, 2022
Short summary
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022,https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Hierarchical deconvolution for incoherent scatter radar data
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022,https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
An alternative cloud index for estimating downwelling surface solar irradiance from various satellite imagers in the framework of a Heliosat-V method
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022,https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO)
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022,https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary

Cited articles

Andrieu, H. and Creutin, J. D.: Identification of Vertical Profiles of Radar Reflectivity for Hydrological Applications Using an Inverse Method, Part I: Formulation, J. Appl. Meteorol., 34, 225–239, https://doi.org/10.1175/1520-0450(1995)034<0225:IOVPOR>2.0.CO;2, 1995. a, b
Andrieu, H., Delrieu, G., and Creutin, J. D.: Identification of Vertical Profiles of Radar Reflectivity For Hydrological Applications Using on Inverse Method. Part 2: Sensitivity Analysis And Case-Study, J. Appl. Meteorol., 34, 240–259, 1995. a
Battan, L. J.: Radar observation of the atmosphere, University of Chicago Press, Chicago, USA, https://doi.org/10.1002/qj.49709942229, 1973. a
Bell, C.: Detection of the Riming Process with a Vertically Pointing Radar, PhD thesis, McGill University, Montreal, Quebec, Canada, 2000. a
Bellon, A., Lee, G., and Zawadzki, I.: Error statistics of VPR corrections in stratiform precipitation, J. Appl. Meteorol., 44, 998–1015, https://doi.org/10.1175/JAM2253.1, 2005. a
Download
Short summary
The paper aims at characterising and quantifying the spatio-temporal variability of the melting layer (ML; transition zone from solid to liquid precipitation). A method based on the Fourier transform is found to accurately describe different ML signatures. Hence, it is applied to characterise the ML variability in a relatively flat area and in an inner Alpine valley in Switzerland, where the variability at smaller spatial scales is found to be relatively more important.