Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2261-2019
https://doi.org/10.5194/amt-12-2261-2019
Research article
 | 
12 Apr 2019
Research article |  | 12 Apr 2019

Application of high-dimensional fuzzy k-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination

Shan Zeng, Mark Vaughan, Zhaoyan Liu, Charles Trepte, Jayanta Kar, Ali Omar, David Winker, Patricia Lucker, Yongxiang Hu, Brian Getzewich, and Melody Avery

Related authors

Discriminating between clouds and aerosols in the CALIOP version 4.1 data products
Zhaoyan Liu, Jayanta Kar, Shan Zeng, Jason Tackett, Mark Vaughan, Melody Avery, Jacques Pelon, Brian Getzewich, Kam-Pui Lee, Brian Magill, Ali Omar, Patricia Lucker, Charles Trepte, and David Winker
Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019,https://doi.org/10.5194/amt-12-703-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025,https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025,https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025,https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025,https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025,https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary

Cited articles

Avery, M. A., Ryan, R., Getzewich, B., Vaughan, M., Winker, D., Hu, Y., and Trepte, C.: Impact of Near-Nadir Viewing Angles on CALIOP V4.1 Cloud Thermodynamic Phase Assignments, in preparation, 2019. 
Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981. 
Bezdek, J. C., Ehrlich, R., and Full, W.: FCM: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191–203, 1984. 
Burrough P. A. and McDonnell R. A.: Principles of Geographic Information Systems, Oxford University Press, Oxford, 1998. 
Burrough, P. A., Van Gaans, P. F. M., and MacMillan, R. A.: High-resolution landform classification using fuzzy K-means, Fuzzy Set. Syst., 113, 37–52, 2000. 
Download
Short summary
We use a fuzzy k-means (FKM) classifier to assess the ability of the CALIPSO cloud–aerosol discrimination (CAD) algorithm to correctly distinguish between clouds and aerosols detected in the CALIPSO lidar backscatter signals. FKM is an unsupervised learning algorithm, so the classifications it derives are wholly independent from those reported by the CAD scheme. For a full month of measurements, the two techniques agree in ~ 95 % of all cases, providing strong evidence for CAD correctness.
Share