Articles | Volume 12, issue 4
https://doi.org/10.5194/amt-12-2261-2019
https://doi.org/10.5194/amt-12-2261-2019
Research article
 | 
12 Apr 2019
Research article |  | 12 Apr 2019

Application of high-dimensional fuzzy k-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination

Shan Zeng, Mark Vaughan, Zhaoyan Liu, Charles Trepte, Jayanta Kar, Ali Omar, David Winker, Patricia Lucker, Yongxiang Hu, Brian Getzewich, and Melody Avery

Related authors

Discriminating between clouds and aerosols in the CALIOP version 4.1 data products
Zhaoyan Liu, Jayanta Kar, Shan Zeng, Jason Tackett, Mark Vaughan, Melody Avery, Jacques Pelon, Brian Getzewich, Kam-Pui Lee, Brian Magill, Ali Omar, Patricia Lucker, Charles Trepte, and David Winker
Atmos. Meas. Tech., 12, 703–734, https://doi.org/10.5194/amt-12-703-2019,https://doi.org/10.5194/amt-12-703-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary

Cited articles

Avery, M. A., Ryan, R., Getzewich, B., Vaughan, M., Winker, D., Hu, Y., and Trepte, C.: Impact of Near-Nadir Viewing Angles on CALIOP V4.1 Cloud Thermodynamic Phase Assignments, in preparation, 2019. 
Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981. 
Bezdek, J. C., Ehrlich, R., and Full, W.: FCM: the fuzzy c-means clustering algorithm, Comput. Geosci., 10, 191–203, 1984. 
Burrough P. A. and McDonnell R. A.: Principles of Geographic Information Systems, Oxford University Press, Oxford, 1998. 
Burrough, P. A., Van Gaans, P. F. M., and MacMillan, R. A.: High-resolution landform classification using fuzzy K-means, Fuzzy Set. Syst., 113, 37–52, 2000. 
Download
Short summary
We use a fuzzy k-means (FKM) classifier to assess the ability of the CALIPSO cloud–aerosol discrimination (CAD) algorithm to correctly distinguish between clouds and aerosols detected in the CALIPSO lidar backscatter signals. FKM is an unsupervised learning algorithm, so the classifications it derives are wholly independent from those reported by the CAD scheme. For a full month of measurements, the two techniques agree in ~ 95 % of all cases, providing strong evidence for CAD correctness.