Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-23-2019
https://doi.org/10.5194/amt-12-23-2019
Research article
 | 
03 Jan 2019
Research article |  | 03 Jan 2019

Atmospheric bending effects in GNSS tomography

Gregor Möller and Daniel Landskron

Related authors

Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022,https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Assimilation of GNSS tomography products into the Weather Research and Forecasting model using radio occultation data assimilation operator
Natalia Hanna, Estera Trzcina, Gregor Möller, Witold Rohm, and Robert Weber
Atmos. Meas. Tech., 12, 4829–4848, https://doi.org/10.5194/amt-12-4829-2019,https://doi.org/10.5194/amt-12-4829-2019, 2019
Short summary
Cross-validation of GPS tomography models and methodological improvements using CORS network
Hugues Brenot, Witold Rohm, Michal Kačmařík, Gregor Möller, André Sá, Damian Tondaś, Lukas Rapant, Riccardo Biondi, Toby Manning, and Cédric Champollion
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-292,https://doi.org/10.5194/amt-2018-292, 2018
Revised manuscript not accepted
Short summary
Inter-technique validation of tropospheric slant total delays
Michal Kačmařík, Jan Douša, Galina Dick, Florian Zus, Hugues Brenot, Gregor Möller, Eric Pottiaux, Jan Kapłon, Paweł Hordyniec, Pavel Václavovic, and Laurent Morel
Atmos. Meas. Tech., 10, 2183–2208, https://doi.org/10.5194/amt-10-2183-2017,https://doi.org/10.5194/amt-10-2183-2017, 2017

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023,https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023,https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary

Cited articles

Aghajany, S. H. and Amerian, Y.: Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements, J. Atmos. Sol.-Terr. Phy., 164, 81–88, https://doi.org/10.1016/j.jastp.2017.08.003, 2017. a
Anderson, D. N., Mendillo, M., and Herniter, B.: A semi-empirical low-latitude ionospheric model, Radio Sci., 22, 292–306, https://doi.org/10.1029/RS022i002p00292, 1987. a
Bender, M. and Raabe, A.: Preconditions to ground based GPS water vapour tomography, Ann. Geophys., 25, 1727–1734, https://doi.org/10.5194/angeo-25-1727-2007, 2007. a
Bender, M., Stosius, R., Zus, F., Dick, G., Wickert, J., and Raabe, A.: GNSS water vapour tomography - Expected improvements by combining GPS, GLONASS and Galileo observations, Adv. Space Res., 47, 886–897, https://doi.org/10.1016/j.asr.2010.09.011, 2011. a
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
The paper describes a ray-tracing approach for the proper reconstruction of GNSS signal paths through the lower atmosphere, identifies possible error sources during ray tracing and provides a strategy for reducing their effect on the GNSS tomography solution, thereby contributing to a more reliable reconstruction of the 3-D water vapor distribution in the lower atmosphere from GNSS measurements.