Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3853-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-3853-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An adaptation of the CO2 slicing technique for the Infrared Atmospheric Sounding Interferometer to obtain the height of tropospheric volcanic ash clouds
Isabelle A. Taylor
CORRESPONDING AUTHOR
COMET, Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
COMET, Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
Elisa Carboni
COMET, Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
Lucy J. Ventress
NCEO, Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
now at: STFC RAL Space, Harwell, Didcot, OX11 0QX, UK
Tamsin A. Mather
COMET, Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
Roy G. Grainger
COMET, Sub-department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, OX1 3PU, UK
Related authors
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Maria-Elissavet Koukouli, Konstantinos Michailidis, Pascal Hedelt, Isabelle A. Taylor, Antje Inness, Lieven Clarisse, Dimitris Balis, Dmitry Efremenko, Diego Loyola, Roy G. Grainger, and Christian Retscher
Atmos. Chem. Phys., 22, 5665–5683, https://doi.org/10.5194/acp-22-5665-2022, https://doi.org/10.5194/acp-22-5665-2022, 2022
Short summary
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Chris Wilson, Brian J. Kerridge, Richard Siddans, David P. Moore, Lucy J. Ventress, Emily Dowd, Wuhu Feng, Martyn P. Chipperfield, and John J. Remedios
Atmos. Chem. Phys., 24, 10639–10653, https://doi.org/10.5194/acp-24-10639-2024, https://doi.org/10.5194/acp-24-10639-2024, 2024
Short summary
Short summary
The leaks from the Nord Stream gas pipelines in September 2022 released a large amount of methane (CH4) into the atmosphere. We provide observational data from a satellite instrument that shows a large CH4 plume over the North Sea off the coast of Scandinavia. We use this together with atmospheric models to quantify the CH4 leaked into the atmosphere from the pipelines. We find that 219–427 Gg CH4 was emitted, making this the largest individual fossil-fuel-related CH4 leak on record.
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Wuhu Feng, and Martyn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2736, https://doi.org/10.5194/egusphere-2024-2736, 2024
Short summary
Short summary
Globally, lockdowns were implemented to limit the spread of COVID-19, leading to a decrease in emissions of key air pollutants. Here, we use novel satellite data and a chemistry model to investigate the impact of the pandemic on tropospheric ozone (O3), a key pollutant, in 2020. Overall, we found substantial decreases of up to 20 %, 2/3s of which came from emission reductions while 1/3 was due to a decrease in the stratospheric ozone flux into the troposphere.
Alice Paine, Joost Frieling, Timothy Shanahan, Tamsin Mather, Nicholas McKay, Stuart Robinson, David Pyle, Isabel Fendley, Ruth Kiely, and William Gosling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2123, https://doi.org/10.5194/egusphere-2024-2123, 2024
Short summary
Short summary
Few tropical Hg records extend beyond ~12 ka, meaning our current understanding of Hg behaviour may not fully account for the impact of long-term hydroclimate changes on the Hg cycle in these environments. Here, we present a ~96,000-year Hg record from Lake Bosumtwi, Ghana. A coupled response is observed between Hg flux and shifts in sediment composition reflective of changes in lake level, and suggesting that hydroclimate may be a key driver of tropical Hg cycling over millennial-timescales.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Rui Song, Adam Povey, and Roy G. Grainger
Atmos. Meas. Tech., 17, 2521–2538, https://doi.org/10.5194/amt-17-2521-2024, https://doi.org/10.5194/amt-17-2521-2024, 2024
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting the Earth's climate. Using data from two lidar-equipped satellites, ALADIN and CALIOP, we examined a 2020 Saharan dust event. The newer ALADIN's results aligned with CALIOP's. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Richard J. Pope, Alexandru Rap, Matilda A. Pimlott, Brice Barret, Eric Le Flochmoen, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Anne Boynard, Christian Retscher, Wuhu Feng, Richard Rigby, Sandip S. Dhomse, Catherine Wespes, and Martyn P. Chipperfield
Atmos. Chem. Phys., 24, 3613–3626, https://doi.org/10.5194/acp-24-3613-2024, https://doi.org/10.5194/acp-24-3613-2024, 2024
Short summary
Short summary
Tropospheric ozone is an important short-lived climate forcer which influences the incoming solar short-wave radiation and the outgoing long-wave radiation in the atmosphere (8–15 km) where the balance between the two yields a net positive (i.e. warming) effect at the surface. Overall, we find that the tropospheric ozone radiative effect ranges between 1.21 and 1.26 W m−2 with a negligible trend (2008–2017), suggesting that tropospheric ozone influences on climate have remained stable with time.
Alice R. Paine, Isabel M. Fendley, Joost Frieling, Tamsin A. Mather, Jack H. Lacey, Bernd Wagner, Stuart A. Robinson, David M. Pyle, Alexander Francke, Theodore R. Them II, and Konstantinos Panagiotopoulos
Biogeosciences, 21, 531–556, https://doi.org/10.5194/bg-21-531-2024, https://doi.org/10.5194/bg-21-531-2024, 2024
Short summary
Short summary
Many important processes within the global mercury (Hg) cycle operate over thousands of years. Here, we explore the timing, magnitude, and expression of Hg signals retained in sediments of lakes Prespa and Ohrid over the past ∼90 000 years. Divergent signals suggest that local differences in sediment composition, lake structure, and water balance influence the local Hg cycle and determine the extent to which sedimentary Hg signals reflect local- or global-scale environmental changes.
Isabelle A. Taylor, Roy G. Grainger, Andrew T. Prata, Simon R. Proud, Tamsin A. Mather, and David M. Pyle
Atmos. Chem. Phys., 23, 15209–15234, https://doi.org/10.5194/acp-23-15209-2023, https://doi.org/10.5194/acp-23-15209-2023, 2023
Short summary
Short summary
This study looks at sulfur dioxide (SO2) and ash emissions from the April 2021 eruption of La Soufrière on St Vincent. Using satellite data, 35 eruptive events were identified. Satellite data were used to track SO2 as it was transported around the globe. The majority of SO2 was emitted into the upper troposphere and lower stratosphere. Similarities with the 1979 eruption of La Soufrière highlight the value of studying these eruptions to be better prepared for future eruptions.
Elisa Carboni, Gareth E. Thomas, Richard Siddans, and Brian Kerridge
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-232, https://doi.org/10.5194/amt-2023-232, 2023
Revised manuscript not accepted
Short summary
Short summary
We analyzed different satellite datasets of cloud properties with a new approach to quantify and interpret their interannual variability based on singular vector decomposition (SVD). The spatial pattern and its temporal evolution are strikingly similar for all the satellite datasets and follow the El Nino Southern Oscillation. The SVD approach reported here has potential for application to satellite data sets and to evaluate consistency between models and observations.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Richard J. Pope, Brian J. Kerridge, Martyn P. Chipperfield, Richard Siddans, Barry G. Latter, Lucy J. Ventress, Matilda A. Pimlott, Wuhu Feng, Edward Comyn-Platt, Garry D. Hayman, Stephen R. Arnold, and Ailish M. Graham
Atmos. Chem. Phys., 23, 13235–13253, https://doi.org/10.5194/acp-23-13235-2023, https://doi.org/10.5194/acp-23-13235-2023, 2023
Short summary
Short summary
In the summer of 2018, Europe experienced several persistent large-scale ozone (O3) pollution episodes. Satellite tropospheric O3 and surface O3 data recorded substantial enhancements in 2018 relative to other years. Targeted model simulations showed that meteorological processes and emissions controlled the elevated surface O3, while mid-tropospheric O3 enhancements were dominated by stratospheric O3 intrusion and advection of North Atlantic O3-rich air masses into Europe.
Moch Syarif Romadhon, Daniel Peters, and Roy Gordon Grainger
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-140, https://doi.org/10.5194/amt-2023-140, 2023
Publication in AMT not foreseen
Short summary
Short summary
The role of atmospheric aerosols on the Earth's climate and air quality is difficult to be determined quantitatively due to the drawback of available instruments. A widely used instrument to study the role is Optical Particle Counter (OPC). However, an assumption of particle refractive index is needed by OPCs to estimate particle size. This paper discusses SPARCLE 2: a new OPC that does not require such assumption. It was validated using standard particles and used to measure ambient air.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Matilda A. Pimlott, Richard J. Pope, Brian J. Kerridge, Barry G. Latter, Diane S. Knappett, Dwayne E. Heard, Lucy J. Ventress, Richard Siddans, Wuhu Feng, and Martyn P. Chipperfield
Atmos. Chem. Phys., 22, 10467–10488, https://doi.org/10.5194/acp-22-10467-2022, https://doi.org/10.5194/acp-22-10467-2022, 2022
Short summary
Short summary
We present a new method to derive global information of the hydroxyl radical (OH), an important atmospheric oxidant. OH controls the lifetime of trace gases important to air quality and climate. We use satellite observations of ozone, carbon monoxide, methane and water vapour in a simple expression to derive OH around 3–4 km altitude. The derived OH compares well to model and aircraft OH data. We then apply the method to 10 years of satellite data to study the inter-annual variability of OH.
Natalie J. Harvey, Helen F. Dacre, Cameron Saint, Andrew T. Prata, Helen N. Webster, and Roy G. Grainger
Atmos. Chem. Phys., 22, 8529–8545, https://doi.org/10.5194/acp-22-8529-2022, https://doi.org/10.5194/acp-22-8529-2022, 2022
Short summary
Short summary
In the event of a volcanic eruption, airlines need to make decisions about which routes are safe to operate and ensure that airborne aircraft land safely. The aim of this paper is to demonstrate the application of a statistical technique that best combines ash information from satellites and a suite of computer forecasts of ash concentration to provide a range of plausible estimates of how much volcanic ash emitted from a volcano is available to undergo long-range transport.
Maria-Elissavet Koukouli, Konstantinos Michailidis, Pascal Hedelt, Isabelle A. Taylor, Antje Inness, Lieven Clarisse, Dimitris Balis, Dmitry Efremenko, Diego Loyola, Roy G. Grainger, and Christian Retscher
Atmos. Chem. Phys., 22, 5665–5683, https://doi.org/10.5194/acp-22-5665-2022, https://doi.org/10.5194/acp-22-5665-2022, 2022
Short summary
Short summary
Volcanic eruptions eject large amounts of ash and trace gases into the atmosphere. The use of space-borne instruments enables the global monitoring of volcanic SO2 emissions in an economical and risk-free manner. The main aim of this paper is to present its extensive verification, accomplished within the ESA S5P+I: SO2LH project, over major recent volcanic eruptions, against collocated space-borne measurements, as well as assess its impact on the forecasts provided by CAMS.
Luca Bugliaro, Dennis Piontek, Stephan Kox, Marius Schmidl, Bernhard Mayer, Richard Müller, Margarita Vázquez-Navarro, Daniel M. Peters, Roy G. Grainger, Josef Gasteiger, and Jayanta Kar
Nat. Hazards Earth Syst. Sci., 22, 1029–1054, https://doi.org/10.5194/nhess-22-1029-2022, https://doi.org/10.5194/nhess-22-1029-2022, 2022
Short summary
Short summary
The monitoring of ash dispersion in the atmosphere is an important task for satellite remote sensing since ash represents a threat to air traffic. We present an AI-based method that retrieves the spatial extension and properties of volcanic ash clouds with high temporal resolution during day and night by means of geostationary satellite measurements. This algorithm, trained on realistic observations simulated with a radiative transfer model, runs operationally at the German Weather Service.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Solène Turquety, Pasquale Sellitto, Henda Guermazi, Giuseppe Salerno, Tommaso Caltabiano, and Elisa Carboni
Geosci. Model Dev., 13, 5707–5723, https://doi.org/10.5194/gmd-13-5707-2020, https://doi.org/10.5194/gmd-13-5707-2020, 2020
Short summary
Short summary
Excessive numerical diffusion is a major limitation in the representation of long-range transport in atmospheric models. In the present study, we focus on excessive diffusion in the vertical direction. We explore three possible ways of addressing this problem: increased vertical resolution, an advection scheme with anti-diffusive properties and more accurate representation of vertical wind. This study focused on a particular volcanic eruption event to improve atmospheric transport modeling.
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020, https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Pasquale Sellitto, Henda Guermazi, Elisa Carboni, Richard Siddans, and Mike Burton
Atmos. Meas. Tech., 12, 5381–5389, https://doi.org/10.5194/amt-12-5381-2019, https://doi.org/10.5194/amt-12-5381-2019, 2019
Short summary
Short summary
Volcanoes release complex plumes of gas and particles. Volcanic gases, like SO2, can additionally condense, once released, to form particles, sulphate aerosol (SA). Observing simultaneously SO2+SA is important: their proportion provides information on the internal state of volcanoes, and can be used to predict plumes' atmospheric evolution and their environmental and climatic impacts. We developed a new method to observe simultaneously, for the first time, SO2+SA using infrared remote sensing.
Henda Guermazi, Pasquale Sellitto, Juan Cuesta, Maxim Eremenko, Mathieu Lachatre, Sylvain Mailler, Elisa Carboni, Giuseppe Salerno, Tommaso Caltabiano, Laurent Menut, Mohamed Moncef Serbaji, Farhat Rekhiss, and Bernard Legras
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-341, https://doi.org/10.5194/amt-2019-341, 2019
Revised manuscript not accepted
Elisa Carboni, Tamsin A. Mather, Anja Schmidt, Roy G. Grainger, Melissa A. Pfeffer, Iolanda Ialongo, and Nicolas Theys
Atmos. Chem. Phys., 19, 4851–4862, https://doi.org/10.5194/acp-19-4851-2019, https://doi.org/10.5194/acp-19-4851-2019, 2019
Short summary
Short summary
The 2014–2015 Holuhraun eruption was the largest in Iceland for 200 years, emitting huge quantities of gas into the troposphere, at times overwhelming European anthropogenic emissions. Infrared Atmospheric sounding Interferometer data are used to derive the first time series of daily sulfur dioxide mass and vertical distribution over the eruption period. A scheme is used to estimate sulfur dioxide fluxes, the total erupted mass, and how long the sulfur dioxide remains in the atmosphere.
Morgan T. Jones, Lawrence M. E. Percival, Ella W. Stokke, Joost Frieling, Tamsin A. Mather, Lars Riber, Brian A. Schubert, Bo Schultz, Christian Tegner, Sverre Planke, and Henrik H. Svensen
Clim. Past, 15, 217–236, https://doi.org/10.5194/cp-15-217-2019, https://doi.org/10.5194/cp-15-217-2019, 2019
Short summary
Short summary
Mercury anomalies in sedimentary rocks are used to assess whether there were periods of elevated volcanism in the geological record. We focus on five sites that cover the Palaeocene–Eocene Thermal Maximum, an extreme global warming event that occurred 55.8 million years ago. We find that sites close to the eruptions from the North Atlantic Igneous Province display significant mercury anomalies across this time interval, suggesting that magmatism played a role in the global warming event.
Julius Vira, Elisa Carboni, Roy G. Grainger, and Mikhail Sofiev
Geosci. Model Dev., 10, 1985–2008, https://doi.org/10.5194/gmd-10-1985-2017, https://doi.org/10.5194/gmd-10-1985-2017, 2017
Short summary
Short summary
The vertical and temporal distributions of sulfur dioxide emissions during the 2010 eruption of Eyjafjallajökull were reconstructed by combining data from the IASI satellite instrument with a dispersion model. Unlike in previous studies, both column density (the total amount above a given point) and the plume height were derived from the satellite data. This resulted in more accurate simulated vertical distributions for the times when the emission was not constrained by the column densities.
Lucy J. Ventress, Gregory McGarragh, Elisa Carboni, Andrew J. Smith, and Roy G. Grainger
Atmos. Meas. Tech., 9, 5407–5422, https://doi.org/10.5194/amt-9-5407-2016, https://doi.org/10.5194/amt-9-5407-2016, 2016
Short summary
Short summary
The detection of volcanic ash plumes and knowledge of their properties have been of increasing interest due to the effect ash particles can have on the aviation industry. A new method is shown for use with hyperspectral satellite instruments, such as the Infrared Atmospheric Sounding Interferometer, to derive optical and physical properties of volcanic ash. The results are compared to ancillary data sources, showing good agreement, which indicates better characterisation of volcanic plumes.
Dimitris Balis, Maria-Elissavet Koukouli, Nikolaos Siomos, Spyridon Dimopoulos, Lucia Mona, Gelsomina Pappalardo, Franco Marenco, Lieven Clarisse, Lucy J. Ventress, Elisa Carboni, Roy G. Grainger, Ping Wang, Gijsbert Tilstra, Ronald van der A, Nicolas Theys, and Claus Zehner
Atmos. Chem. Phys., 16, 5705–5720, https://doi.org/10.5194/acp-16-5705-2016, https://doi.org/10.5194/acp-16-5705-2016, 2016
Short summary
Short summary
The ESA-funded SACS-2 and SMASH projects developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. These estimates were validated using ground-based and aircraft lidar measurements. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets. The IASI data show a better consistency concerning the ash optical depth and ash layer height.
Elisa Carboni, Roy G. Grainger, Tamsin A. Mather, David M. Pyle, Gareth E. Thomas, Richard Siddans, Andrew J. A. Smith, Anu Dudhia, Mariliza E. Koukouli, and Dimitrios Balis
Atmos. Chem. Phys., 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, https://doi.org/10.5194/acp-16-4343-2016, 2016
Short summary
Short summary
The Infrared Atmospheric Sounding Interferometer (IASI) can be used to study volcanic emission of sulfur dioxide (SO2), returning both SO2 amount and altitude data. The series of analyzed eruptions (2008 to 2012) show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grimsvotn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause. This tendency was independent of the maximum amount of SO2 and of the volcanic explosive index.
A. C. Povey and R. G. Grainger
Atmos. Meas. Tech., 8, 4699–4718, https://doi.org/10.5194/amt-8-4699-2015, https://doi.org/10.5194/amt-8-4699-2015, 2015
Short summary
Short summary
Clear communication of the uncertainty on data is necessary for users to make appropriate use of it. This paper discusses the representation of uncertainty in satellite observations of the environment, arguing that the dominant sources of error are assumptions made during data analysis. The resulting uncertainty may be more usefully represented using ensemble techniques (a set of analyses using different assumptions to illustrate their impact) than with traditional statistical metrics.
S. K. Ebmeier, A. M. Sayer, R. G. Grainger, T. A. Mather, and E. Carboni
Atmos. Chem. Phys., 14, 10601–10618, https://doi.org/10.5194/acp-14-10601-2014, https://doi.org/10.5194/acp-14-10601-2014, 2014
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Retrieval of stratospheric aerosol extinction coefficients from sun-normalized Ozone Mapper and Profiler Suite Limb Profiler (OMPS-LP) measurements
Total column optical depths retrieved from CALIPSO lidar ocean surface backscatter
ALICENET – an Italian network of automated lidar ceilometers for four-dimensional aerosol monitoring: infrastructure, data processing, and applications
Post-process correction improves the accuracy of satellite PM2.5 retrievals
Increasing aerosol optical depth spatial and temporal availability by merging datasets from geostationary and sun-synchronous satellites
Multi-angle aerosol optical depth retrieval method based on improved surface reflectance
Comparison of diurnal aerosol products retrieved from combinations of micro-pulse lidar and sun photometer observations over the KAUST observation site
First atmospheric aerosol-monitoring results from the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia
Aerosol optical depth data fusion with Geostationary Korea Multi-Purpose Satellite (GEO-KOMPSAT-2) instruments GEMS, AMI, and GOCI-II: statistical and deep neural network methods
Stratospheric aerosol characteristics from SCIAMACHY limb observations: two-parameter retrieval
Retrieval and analysis of the composition of an aerosol mixture through Mie–Raman–fluorescence lidar observations
Transport of the Hunga volcanic aerosols inferred from Himawari-8/9 limb measurements
A near-global multiyear climate data record of the fine-mode and coarse-mode components of atmospheric pure dust
Ground-based contrail observations: comparisons with flight telemetry and contrail model estimates
Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy
Evaluation of calibration performance of a low-cost particulate matter sensor using collocated and distant NO2
Geostationary aerosol retrievals of extreme biomass burning plumes during the 2019–2020 Australian bushfires
Multi-wavelength dataset of aerosol extinction profiles retrieved from GOMOS stellar occultation measurements
Deep-Pathfinder: a boundary layer height detection algorithm based on image segmentation
An iterative algorithm to simultaneously retrieve aerosol extinction and effective radius profiles using CALIOP
Cloud detection from multi-angular polarimetric satellite measurements using a neural network ensemble approach
Retrieving UV–Vis spectral single-scattering albedo of absorbing aerosols above clouds from synergy of ORACLES airborne and A-train sensors
Characterization of stratospheric particle size distribution uncertainties using SAGE II and SAGE III/ISS extinction spectra
Parameterizing spectral surface reflectance relationships for the Dark Target aerosol algorithm applied to a geostationary imager
Aerosol and cloud data processing and optical property retrieval algorithms for the spaceborne ACDL/DQ-1
Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements
Long-term aerosol particle depolarization ratio measurements with HALO Photonics Doppler lidar
HETEAC-Flex: an optimal estimation method for aerosol typing based on lidar-derived intensive optical properties
MAGARA: a Multi-Angle Geostationary Aerosol Retrieval Algorithm
Multi-section reference value for the analysis of horizontally scanning aerosol lidar observations
Retrieval of aerosol optical depth over the Arctic cryosphere during spring and summer using satellite observations
Quantifying particulate matter optical properties and flow rate in industrial stack plumes from the PRISMA hyperspectral imager
Aerosol retrieval over snow using the RemoTAP algorithm
Combined sun-photometer–lidar inversion: lessons learned during the EARLINET/ACTRIS COVID-19 campaign
Simultaneous retrieval of aerosol and ocean properties from PACE HARP2 with uncertainty assessment using cascading neural network radiative transfer models
Linear polarization signatures of atmospheric dust with the SolPol direct-sun polarimeter
Retrieval of aerosol properties from zenith sky radiance measurements
An ensemble method for improving the estimation of planetary boundary layer height from radiosonde data
Detection and analysis of Lhù'ààn Mân' (Kluane Lake) dust plumes using passive and active ground-based remote sensing supported by physical surface measurements
Cloud top heights and aerosol layer properties from EarthCARE lidar observations: the A-CTH and A-ALD products
Influence of electromagnetic interference on the evaluation of lidar-derived aerosol properties from Ny-Ålesund, Svalbard
Global 3-D distribution of aerosol composition by synergistic use of CALIOP and MODIS observations
Aerosol optical depth retrieval from the EarthCARE Multi-Spectral Imager: the M-AOT product
Evaluating the effects of columnar NO2 on the accuracy of aerosol optical properties retrievals
An explicit formulation for the retrieval of the overlap function in an elastic and Raman aerosol lidar
The classification of atmospheric hydrometeors and aerosols from the EarthCARE radar and lidar: the A-TC, C-TC and AC-TC products
SAGE III/ISS aerosol/cloud categorization and its impact on GloSSAC
Exploring geometrical stereoscopic aerosol top height retrieval from geostationary satellite imagery in East Asia
Sensitivity studies of nighttime top-of-atmosphere radiances from artificial light sources using a 3-D radiative transfer model for nighttime aerosol retrievals
Instantaneous aerosol and surface retrieval using satellites in geostationary orbit (iAERUS-GEO) – estimation of 15 min aerosol optical depth from MSG/SEVIRI and evaluation with reference data
Alexei Rozanov, Christine Pohl, Carlo Arosio, Adam Bourassa, Klaus Bramstedt, Elizaveta Malinina, Landon Rieger, and John P. Burrows
Atmos. Meas. Tech., 17, 6677–6695, https://doi.org/10.5194/amt-17-6677-2024, https://doi.org/10.5194/amt-17-6677-2024, 2024
Short summary
Short summary
We developed a new algorithm to retrieve vertical distributions of aerosol extinction coefficients in the stratosphere. The algorithm is applied to measurements of scattered solar light from the spaceborne OMPS-LP (Ozone Mapper and Profiler Suite Limb Profiler) instrument. The retrieval results are compared to data from other spaceborne instruments and used to investigate the evolution of the aerosol plume following the eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022.
Robert A. Ryan, Mark A. Vaughan, Sharon D. Rodier, Jason L. Tackett, John A. Reagan, Richard A. Ferrare, Johnathan W. Hair, John A. Smith, and Brian J. Getzewich
Atmos. Meas. Tech., 17, 6517–6545, https://doi.org/10.5194/amt-17-6517-2024, https://doi.org/10.5194/amt-17-6517-2024, 2024
Short summary
Short summary
We introduce Ocean Derived Column Optical Depth (ODCOD), a new way to estimate column optical depths using Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements from the ocean surface. ODCOD estimates include contributions from particulates in the full column, which CALIOP estimates do not, making it a complement measurement to CALIOP’s standard estimates. We find that ODCOD compares well with other established data sets in the daytime but tends to estimate higher at night.
Annachiara Bellini, Henri Diémoz, Luca Di Liberto, Gian Paolo Gobbi, Alessandro Bracci, Ferdinando Pasqualini, and Francesca Barnaba
Atmos. Meas. Tech., 17, 6119–6144, https://doi.org/10.5194/amt-17-6119-2024, https://doi.org/10.5194/amt-17-6119-2024, 2024
Short summary
Short summary
We provide a comprehensive overview of the Italian Automated LIdar-CEilometer network, ALICENET, describing its infrastructure, aerosol retrievals, and main applications. The supplement covers data-processing details. We include examples of output products, comparisons with independent data, and examples of the network capability to provide near-real-time aerosol fields over Italy. ALICENET is expected to benefit the sectors of air quality, radiative budget/solar energy, and aviation safety.
Andrea Porcheddu, Ville Kolehmainen, Timo Lähivaara, and Antti Lipponen
Atmos. Meas. Tech., 17, 5747–5764, https://doi.org/10.5194/amt-17-5747-2024, https://doi.org/10.5194/amt-17-5747-2024, 2024
Short summary
Short summary
This study focuses on improving the accuracy of satellite-based PM2.5 retrieval, crucial for monitoring air quality and its impact on health. It employs machine learning to correct the AOD-to-PM2.5 conversion ratio using various data sources. The approach produces high-resolution PM2.5 estimates with improved accuracy. The method is flexible and can incorporate additional training data from different sources, making it a valuable tool for air quality monitoring and epidemiological studies.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech., 17, 5455–5476, https://doi.org/10.5194/amt-17-5455-2024, https://doi.org/10.5194/amt-17-5455-2024, 2024
Short summary
Short summary
In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models.
Lijuan Chen, Ren Wang, Ying Fei, Peng Fang, Yong Zha, and Haishan Chen
Atmos. Meas. Tech., 17, 4411–4424, https://doi.org/10.5194/amt-17-4411-2024, https://doi.org/10.5194/amt-17-4411-2024, 2024
Short summary
Short summary
This study explores the problems of surface reflectance estimation from previous MISR satellite remote sensing images and develops an error correction model to obtain a higher-precision aerosol optical depth (AOD) product. High-accuracy AOD is important not only for the daily monitoring of air pollution but also for the study of energy exchange between land and atmosphere. This will help further improve the retrieval accuracy of multi-angle AOD on large spatial scales and for long time series.
Anton Lopatin, Oleg Dubovik, Georgiy Stenchikov, Ellsworth J. Welton, Illia Shevchenko, David Fuertes, Marcos Herreras-Giralda, Tatsiana Lapyonok, and Alexander Smirnov
Atmos. Meas. Tech., 17, 4445–4470, https://doi.org/10.5194/amt-17-4445-2024, https://doi.org/10.5194/amt-17-4445-2024, 2024
Short summary
Short summary
We compare aerosol properties over the King Abdullah University of Science and Technology campus using Generalized Retrieval of Aerosol and Surface Properties (GRASP) and the Micro-Pulse Lidar Network (MPLNET). We focus on the impact of different aerosol retrieval assumptions on daytime and nighttime retrievals and analyze seasonal variability in aerosol properties, aiding in understanding aerosol behavior and improving retrieval. Our work has implications for climate and public health.
Yeseul Cho, Jhoon Kim, Sujung Go, Mijin Kim, Seoyoung Lee, Minseok Kim, Heesung Chong, Won-Jin Lee, Dong-Won Lee, Omar Torres, and Sang Seo Park
Atmos. Meas. Tech., 17, 4369–4390, https://doi.org/10.5194/amt-17-4369-2024, https://doi.org/10.5194/amt-17-4369-2024, 2024
Short summary
Short summary
Aerosol optical properties have been provided by the Geostationary Environment Monitoring Spectrometer (GEMS), the world’s first geostationary-Earth-orbit (GEO) satellite instrument designed for atmospheric environmental monitoring. This study describes improvements made to the GEMS aerosol retrieval algorithm (AERAOD) and presents its validation results. These enhancements aim to provide more accurate and reliable aerosol-monitoring results for Asia.
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Yun-Gon Lee, Sujung Go, and Kyunghwa Lee
Atmos. Meas. Tech., 17, 4317–4335, https://doi.org/10.5194/amt-17-4317-2024, https://doi.org/10.5194/amt-17-4317-2024, 2024
Short summary
Short summary
Information about aerosol loading in the atmosphere can be collected from various satellite instruments. Aerosol products from various satellite instruments have their own error characteristics. This study statistically merged aerosol optical depth datasets from multiple instruments aboard geostationary satellites considering uncertainties. Also, a deep neural network technique is adopted for aerosol data merging.
Christine Pohl, Felix Wrana, Alexei Rozanov, Terry Deshler, Elizaveta Malinina, Christian von Savigny, Landon A. Rieger, Adam E. Bourassa, and John P. Burrows
Atmos. Meas. Tech., 17, 4153–4181, https://doi.org/10.5194/amt-17-4153-2024, https://doi.org/10.5194/amt-17-4153-2024, 2024
Short summary
Short summary
Knowledge of stratospheric aerosol characteristics is important for understanding chemical and climate aerosol feedbacks. Two particle size distribution parameters, the aerosol extinction coefficient and the effective radius, are obtained from SCIAMACHY limb observations. The aerosol characteristics show good agreement with independent data sets from balloon-borne and satellite observations. This data set expands the limited knowledge of stratospheric aerosol characteristics.
Igor Veselovskii, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskii, Gaël Dubois, William Boissiere, and Nikita Kasianik
Atmos. Meas. Tech., 17, 4137–4152, https://doi.org/10.5194/amt-17-4137-2024, https://doi.org/10.5194/amt-17-4137-2024, 2024
Short summary
Short summary
The paper presents a new method that categorizes atmospheric aerosols by analyzing their optical properties with a Mie–Raman–fluorescence lidar. The research specifically looks into understanding the presence of smoke, urban, and dust aerosols in the mixtures identified by this lidar. The reliability of the results is evaluated using the Monte Carlo technique. The effectiveness of this approach is successfully demonstrated through testing in ATOLL, an observatory influenced by diverse aerosols.
Fred Prata
Atmos. Meas. Tech., 17, 3751–3764, https://doi.org/10.5194/amt-17-3751-2024, https://doi.org/10.5194/amt-17-3751-2024, 2024
Short summary
Short summary
Geostationary satellite data have been used to measure the stratospheric aerosols from the explosive Hunga volcanic eruption by using the data in a novel way. The onboard imager views part of the Earth's limb and data from this region were analysed to generate vertical cross-sections of aerosols high in the atmosphere. The analyses show the hemispheric spread of the aerosols and their vertical structure in layers from 22–28 km in the stratosphere.
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024, https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Short summary
A new four-dimensional, multiyear, and near-global climate data record of the fine-mode (submicrometer diameter) and coarse-mode (supermicrometer diameter) components of atmospheric pure dust is presented. The dataset is considered unique with respect to a wide range of potential applications, including climatological, time series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and datasets, and air quality.
Jade Low, Roger Teoh, Joel Ponsonby, Edward Gryspeerdt, Marc Shapiro, and Marc Stettler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1458, https://doi.org/10.5194/egusphere-2024-1458, 2024
Short summary
Short summary
The radiative forcing due to contrails is the same order of magnitude as aviation CO2 emissions yet has a higher uncertainty. Observations are vital to improve understanding of the contrail lifecycle, to improve model and to measure the effect of mitigation action. Here, we use ground-based cameras combined with flight telemetry to track visible contrails and measure their lifetime and width. We evaluate model predictions and demonstrate the capability of this approach.
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
Atmos. Meas. Tech., 17, 3367–3375, https://doi.org/10.5194/amt-17-3367-2024, https://doi.org/10.5194/amt-17-3367-2024, 2024
Short summary
Short summary
This paper focuses on the use of fluorescence to study aerosols with lidar. An innovative method for aerosol hygroscopic growth study using fluorescence is presented. The paper presents case studies to showcase the effectiveness and potential of the proposed approach. These advancements will contribute to better understanding the interactions between aerosols and water vapor, with future work expected to be dedicated to aerosol–cloud interaction.
Kabseok Ko, Seokheon Cho, and Ramesh R. Rao
Atmos. Meas. Tech., 17, 3303–3322, https://doi.org/10.5194/amt-17-3303-2024, https://doi.org/10.5194/amt-17-3303-2024, 2024
Short summary
Short summary
In our study, we examined how NO2, temperature, and relative humidity influence the calibration of PurpleAir PA-II sensors. We found that incorporating NO2 data from collocated reliable instruments enhances PM2.5 calibration performance. Due to the impracticality of collocating reliable NO2 instruments with sensors, we suggest using distant NO2 data for calibration. We demonstrated that performance improves when distant NO2 correlates highly with collocated NO2 measurements.
Daniel J. V. Robbins, Caroline A. Poulsen, Steven T. Siems, Simon R. Proud, Andrew T. Prata, Roy G. Grainger, and Adam C. Povey
Atmos. Meas. Tech., 17, 3279–3302, https://doi.org/10.5194/amt-17-3279-2024, https://doi.org/10.5194/amt-17-3279-2024, 2024
Short summary
Short summary
Extreme wildfire events are becoming more common with climate change. The smoke plumes associated with these wildfires are not captured by current operational satellite products due to their high optical thickness. We have developed a novel aerosol retrieval for the Advanced Himawari Imager to study these plumes. We find very high values of optical thickness not observed in other operational satellite products, suggesting these plumes have been missed in previous studies.
Viktoria F. Sofieva, Monika Szelag, Johanna Tamminen, Didier Fussen, Christine Bingen, Filip Vanhellemont, Nina Mateshvili, Alexei Rozanov, and Christine Pohl
Atmos. Meas. Tech., 17, 3085–3101, https://doi.org/10.5194/amt-17-3085-2024, https://doi.org/10.5194/amt-17-3085-2024, 2024
Short summary
Short summary
We have developed the new multi-wavelength dataset of aerosol extinction profiles, which are retrieved from the averaged transmittance spectra by the Global Ozone Monitoring by Occultation of Stars instrument aboard Envisat. The retrieved aerosol extinction profiles are provided in the altitude range 10–40 km at 400, 440, 452, 470, 500, 525, 550, 672 and 750 nm for the period 2002–2012. FMI-GOMOSaero aerosol profiles have improved quality; they are in good agreement with other datasets.
Jasper S. Wijnands, Arnoud Apituley, Diego Alves Gouveia, and Jan Willem Noteboom
Atmos. Meas. Tech., 17, 3029–3045, https://doi.org/10.5194/amt-17-3029-2024, https://doi.org/10.5194/amt-17-3029-2024, 2024
Short summary
Short summary
The mixing of air in the lower atmosphere influences the concentration of air pollutants and greenhouse gases. Our study developed a new method, Deep-Pathfinder, to estimate mixing layer height. Deep-Pathfinder analyses imagery with aerosol observations using artificial intelligence techniques for computer vision. Compared to existing methods, it improves temporal consistency and resolution and can be used in real time, which is valuable for aviation, forecasting, and air quality monitoring.
Liang Chang, Jing Li, Jingjing Ren, Changrui Xiong, and Lu Zhang
Atmos. Meas. Tech., 17, 2637–2648, https://doi.org/10.5194/amt-17-2637-2024, https://doi.org/10.5194/amt-17-2637-2024, 2024
Short summary
Short summary
We described a modified lidar inversion algorithm to retrieve aerosol extinction and size distribution simultaneously from two-wavelength elastic lidar measurements. Its major advantage is that the lidar ratio of each layer is determined iteratively by a lidar ratio–Ångström exponent lookup table. The algorithm was applied to the Raman lidar and CALIOP measurements. The retrieved results by our method are in good agreement with those achieved by Raman method.
Zihao Yuan, Guangliang Fu, Bastiaan van Diedenhoven, Hai Xiang Lin, Jan Willem Erisman, and Otto P. Hasekamp
Atmos. Meas. Tech., 17, 2595–2610, https://doi.org/10.5194/amt-17-2595-2024, https://doi.org/10.5194/amt-17-2595-2024, 2024
Short summary
Short summary
Currently, aerosol properties from spaceborne multi-angle polarimeter (MAP) instruments can only be retrieved in cloud-free areas or in areas where an aerosol layer is located above a cloud. Therefore, it is important to be able to identify cloud-free pixels for which an aerosol retrieval algorithm can provide meaningful output. The developed neural network cloud screening demonstrates that cloud masking for MAP aerosol retrieval can be based on the MAP measurements themselves.
Hiren T. Jethva, Omar Torres, Richard A. Ferrare, Sharon P. Burton, Anthony L. Cook, David B. Harper, Chris A. Hostetler, Jens Redemann, Vinay Kayetha, Samuel LeBlanc, Kristina Pistone, Logan Mitchell, and Connor J. Flynn
Atmos. Meas. Tech., 17, 2335–2366, https://doi.org/10.5194/amt-17-2335-2024, https://doi.org/10.5194/amt-17-2335-2024, 2024
Short summary
Short summary
We introduce a novel synergy algorithm applied to ORALCES airborne measurements of above-cloud aerosol optical depth and UV–Vis satellite observations from OMI and MODIS to retrieve spectral aerosol single-scattering albedo of lofted layers of carbonaceous smoke aerosols over clouds. The development of the proposed aerosol–cloud algorithm implies a possible synergy of CALIOP and OMI–MODIS passive sensors to deduce a global product of AOD and SSA of absorbing aerosols above clouds.
Travis N. Knepp, Mahesh Kovilakam, Larry Thomason, and Stephen J. Miller
Atmos. Meas. Tech., 17, 2025–2054, https://doi.org/10.5194/amt-17-2025-2024, https://doi.org/10.5194/amt-17-2025-2024, 2024
Short summary
Short summary
An algorithm is presented to derive a new SAGE III/ISS (Stratospheric Aerosol and Gas Experiment III on the International Space Station) Level-2 product: the size distribution of stratospheric particles. This is a significant improvement over previous techniques in that we now provide uncertainty estimates for all inferred parameters. We also evaluated the stability of this method in retrieving bimodal distribution parameters. We present a special application to the 2022 eruption of Hunga Tonga.
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024, https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Short summary
The study focused on evaluating and modifying the surface reflectance parameterization (SRP) of the Dark Target (DT) algorithm for geostationary observation. When using the DT SRP with the ABIs sensor on GOES-R, artificial diurnal signatures were present in AOD retrieval. To overcome this issue, a new SRP was developed, incorporating solar zenith angle and land cover type. The revised SRP resulted in improved AOD retrieval, demonstrating reduced bias around local noon.
Guangyao Dai, Songhua Wu, Wenrui Long, Jiqiao Liu, Yuan Xie, Kangwen Sun, Fanqian Meng, Xiaoquan Song, Zhongwei Huang, and Weibiao Chen
Atmos. Meas. Tech., 17, 1879–1890, https://doi.org/10.5194/amt-17-1879-2024, https://doi.org/10.5194/amt-17-1879-2024, 2024
Short summary
Short summary
An overview is given of the main algorithms applied to derive the aerosol and cloud optical property product of the Aerosol and Carbon Detection Lidar (ACDL), which is capable of globally profiling aerosol and cloud optical properties with high accuracy. The paper demonstrates the observational capabilities of ACDL for aerosol and cloud vertical structure and global distribution through two optical property product measurement cases and global aerosol optical depth profile observations.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-17-1023-2024, https://doi.org/10.5194/amt-17-1023-2024, 2024
Short summary
Short summary
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Viet Le, Hannah Lobo, Ewan J. O'Connor, and Ville Vakkari
Atmos. Meas. Tech., 17, 921–941, https://doi.org/10.5194/amt-17-921-2024, https://doi.org/10.5194/amt-17-921-2024, 2024
Short summary
Short summary
This study offers a long-term overview of aerosol particle depolarization ratio at the wavelength of 1565 nm obtained from vertical profiling measurements by Halo Doppler lidars during 4 years at four different locations across Finland. Our observations support the long-term usage of Halo Doppler lidar depolarization ratio such as the detection of aerosols that may pose a safety risk for aviation. Long-range Saharan dust transport and pollen transport are also showcased here.
Athena Augusta Floutsi, Holger Baars, and Ulla Wandinger
Atmos. Meas. Tech., 17, 693–714, https://doi.org/10.5194/amt-17-693-2024, https://doi.org/10.5194/amt-17-693-2024, 2024
Short summary
Short summary
We introduce an aerosol-typing scheme (HETEAC-Flex) based on lidar-derived intensive optical properties and applicable to ground-based and spaceborne lidars. HETEAC-Flex utilizes the optimal estimation method and enables the identification of up to four different aerosol components, as well as the determination of their contribution to the aerosol mixture in terms of relative volume. The aerosol components represent common aerosol types such as dust, sea salt, smoke and pollution.
James A. Limbacher, Ralph A. Kahn, Mariel D. Friberg, Jaehwa Lee, Tyler Summers, and Hai Zhang
Atmos. Meas. Tech., 17, 471–498, https://doi.org/10.5194/amt-17-471-2024, https://doi.org/10.5194/amt-17-471-2024, 2024
Short summary
Short summary
We present the new Multi-Angle Geostationary Aerosol Retrieval Algorithm (MAGARA) that fuses observations from GOES-16 and GOES-17 to retrieve information about aerosol loading (at 10–15 min cadence) and aerosol particle properties (daily), all at pixel-level resolution. We present MAGARA results for three case studies: the 2018 California Camp Fire, the 2019 Williams Flats Fire, and the 2019 Kincade Fire. We also compare MAGARA aerosol loading and particle properties with AERONET.
Juseon Shin, Gahyeong Kim, Dukhyeon Kim, Matthias Tesche, Gahyeon Park, and Youngmin Noh
Atmos. Meas. Tech., 17, 397–406, https://doi.org/10.5194/amt-17-397-2024, https://doi.org/10.5194/amt-17-397-2024, 2024
Short summary
Short summary
We introduce the multi-section method, a novel approach for stable extinction coefficient retrievals in horizontally scanning aerosol lidar measurements, in this study. Our method effectively removes signal–noise-induced irregular peaks and derives a reference extinction coefficient, αref, from multiple scans, resulting in a strong correlation (>0.74) with PM2.5 mass concentrations. Case studies demonstrate its utility in retrieving spatio-temporal aerosol distributions and PM2.5 concentrations.
Basudev Swain, Marco Vountas, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Soheila Jafariserajehlou, Sachin S. Gunthe, Andreas Herber, Christoph Ritter, Hartmut Bösch, and John P. Burrows
Atmos. Meas. Tech., 17, 359–375, https://doi.org/10.5194/amt-17-359-2024, https://doi.org/10.5194/amt-17-359-2024, 2024
Short summary
Short summary
Aerosols are suspensions of particles dispersed in the air. In this study, we use a novel retrieval of satellite data to investigate an optical property of aerosols, the aerosol optical depth, in the high Arctic to assess their direct and indirect roles in climate change. This study demonstrates that the presented approach shows good quality and very promising potential.
Gabriel Calassou, Pierre-Yves Foucher, and Jean-François Léon
Atmos. Meas. Tech., 17, 57–71, https://doi.org/10.5194/amt-17-57-2024, https://doi.org/10.5194/amt-17-57-2024, 2024
Short summary
Short summary
We propose analyzing the aerosol composition of plumes emitted by different industrial stacks using PRISMA satellite hyperspectral observations. Three industrial sites have been observed: a coal-fired power plant in South Africa, a steel plant in China, and gas flaring at an oil extraction site in Algeria. Aerosol optical thickness and particle radius are retrieved within the plumes. The mass flow rate of particulate matter is estimated in the plume using the integrated mass enhancement method.
Zihan Zhang, Guangliang Fu, and Otto Hasekamp
Atmos. Meas. Tech., 16, 6051–6063, https://doi.org/10.5194/amt-16-6051-2023, https://doi.org/10.5194/amt-16-6051-2023, 2023
Short summary
Short summary
In order to conduct accurate aerosol retrieval over snow, the Remote Sensing of Trace Gases and Aerosol Products (RemoTAP) algorithm is extended with a bi-directional reflection distribution function for snow surfaces. The experiments with both synthetic and real data show that the extended RemoTAP maintains capability for snow-free pixels and has obvious advantages in accuracy and the fraction of successful retrievals for retrieval over snow, especially over surfaces with snow cover > 75 %.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Vasiliki Daskalopoulou, Panagiotis I. Raptis, Alexandra Tsekeri, Vassilis Amiridis, Stelios Kazadzis, Zbigniew Ulanowski, Vassilis Charmandaris, Konstantinos Tassis, and William Martin
Atmos. Meas. Tech., 16, 4529–4550, https://doi.org/10.5194/amt-16-4529-2023, https://doi.org/10.5194/amt-16-4529-2023, 2023
Short summary
Short summary
Atmospheric dust particles may present a preferential alignment due to their shape on long range transport. Since dust is abundant and plays a key role to global climate, the elusive observation of orientation will be a game changer to existing measurement techniques and the representation of particles in climate models. We utilize a specifically designed instrument, SolPol, and target the Sun from the ground for large polarization values under dusty conditions, a clear sign of orientation.
Sara Herrero-Anta, Roberto Román, David Mateos, Ramiro González, Juan Carlos Antuña-Sánchez, Marcos Herreras-Giralda, Antonio Fernando Almansa, Daniel González-Fernández, Celia Herrero del Barrio, Carlos Toledano, Victoria E. Cachorro, and Ángel M. de Frutos
Atmos. Meas. Tech., 16, 4423–4443, https://doi.org/10.5194/amt-16-4423-2023, https://doi.org/10.5194/amt-16-4423-2023, 2023
Short summary
Short summary
This paper shows the potential of a simple radiometer like the ZEN-R52 as a possible alternative for aerosol property retrieval in remote areas. A calibration method based on radiative transfer simulations together with an inversion methodology using the GRASP code is proposed here. The results demonstrate that this methodology is useful for the retrieval of aerosol extensive properties like aerosol optical depth (AOD) and aerosol volume concentration for total, fine and coarse modes.
Xi Chen, Ting Yang, Zifa Wang, Futing Wang, and Haibo Wang
Atmos. Meas. Tech., 16, 4289–4302, https://doi.org/10.5194/amt-16-4289-2023, https://doi.org/10.5194/amt-16-4289-2023, 2023
Short summary
Short summary
Uncertainties remain great in the planetary boundary layer height (PBLH) determination from radiosonde, especially during the transition period of different PBL regimes. We combine seven existing methods along with statistical modification on gradient-based methods. We find that the ensemble method can eliminate the overestimation of PBLH and reduce the inconsistency between individual methods. The ensemble method improves the effectiveness of PBLH determination to 62.6 %.
Seyed Ali Sayedain, Norman T. O'Neill, James King, Patrick L. Hayes, Daniel Bellamy, Richard Washington, Sebastian Engelstaedter, Andy Vicente-Luis, Jill Bachelder, and Malo Bernhard
Atmos. Meas. Tech., 16, 4115–4135, https://doi.org/10.5194/amt-16-4115-2023, https://doi.org/10.5194/amt-16-4115-2023, 2023
Short summary
Short summary
We used (columnar) ground-based remote sensing (RS) tools and surface measurements to characterize local (drainage-basin) dust plumes at a site in the Yukon. Plume height, particle size, and column-to-surface ratios enabled insights into how satellite RS could be used to analyze Arctic-wide dust transport. This helps modelers refine dust impacts in their climate change simulations. It is an important step since local dust is a key source of dust deposition on snow in the sensitive Arctic region.
Ulla Wandinger, Moritz Haarig, Holger Baars, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 4031–4052, https://doi.org/10.5194/amt-16-4031-2023, https://doi.org/10.5194/amt-16-4031-2023, 2023
Short summary
Short summary
We introduce the algorithms that have been developed to derive cloud top height and aerosol layer products from observations with the Atmospheric Lidar (ATLID) onboard the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE). The products provide information on the uppermost cloud and geometrical and optical properties of aerosol layers in an atmospheric column. They can be used individually but also serve as input for algorithms that combine observations with EarthCARE’s lidar and imager.
Tim Poguntke and Christoph Ritter
Atmos. Meas. Tech., 16, 4009–4014, https://doi.org/10.5194/amt-16-4009-2023, https://doi.org/10.5194/amt-16-4009-2023, 2023
Short summary
Short summary
In this work we analyze the impact of electromagnetic interference on an aerosol lidar. We found that aging transient recorders may produce a noise with fixed frequency that can be removed a posteriori.
Rei Kudo, Akiko Higurashi, Eiji Oikawa, Masahiro Fujikawa, Hiroshi Ishimoto, and Tomoaki Nishizawa
Atmos. Meas. Tech., 16, 3835–3863, https://doi.org/10.5194/amt-16-3835-2023, https://doi.org/10.5194/amt-16-3835-2023, 2023
Short summary
Short summary
A synergistic retrieval method of aerosol components (water-soluble, light-absorbing, dust, and sea salt particles) from CALIOP and MODIS observations was developed. The total global 3-D distributions and those for each component showed good consistency with the CALIOP and MODIS official products and previous studies. The shortwave direct radiative effects of each component at the top and bottom of the atmosphere and for the heating rate were also consistent with previous studies.
Nicole Docter, Rene Preusker, Florian Filipitsch, Lena Kritten, Franziska Schmidt, and Jürgen Fischer
Atmos. Meas. Tech., 16, 3437–3457, https://doi.org/10.5194/amt-16-3437-2023, https://doi.org/10.5194/amt-16-3437-2023, 2023
Short summary
Short summary
We describe the stand-alone retrieval algorithm used to derive aerosol properties relying on measurements of the Multi-Spectral Imager (MSI) aboard the upcoming Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite. This aerosol data product will be available as M-AOT after the launch of EarthCARE. Additionally, we applied the algorithm to simulated EarthCARE MSI and Moderate Resolution Imaging Spectroradiometer (MODIS) data for prelaunch algorithm verification.
Theano Drosoglou, Ioannis-Panagiotis Raptis, Massimo Valeri, Stefano Casadio, Francesca Barnaba, Marcos Herreras-Giralda, Anton Lopatin, Oleg Dubovik, Gabriele Brizzi, Fabrizio Niro, Monica Campanelli, and Stelios Kazadzis
Atmos. Meas. Tech., 16, 2989–3014, https://doi.org/10.5194/amt-16-2989-2023, https://doi.org/10.5194/amt-16-2989-2023, 2023
Short summary
Short summary
Aerosol optical properties derived from sun photometers depend on the optical depth of trace gases absorbing solar radiation at specific spectral ranges. Various networks use satellite-based climatologies to account for this or neglect their effect. In this work, we evaluate the effect of NO2 absorption in aerosol retrievals from AERONET and SKYNET over two stations in Rome, Italy, with relatively high NO2 spatiotemporal variations, using NO2 data from the Pandora network and the TROPOMI sensor.
Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Michaël Sicard, Federico Dios, Cristina Gil-Díaz, Daniel Camilo Fortunato dos Santos Oliveira, and Francesc Rocadenbosch
Atmos. Meas. Tech., 16, 3015–3025, https://doi.org/10.5194/amt-16-3015-2023, https://doi.org/10.5194/amt-16-3015-2023, 2023
Short summary
Short summary
We derive an explicit (i.e., non-iterative) formula for the retrieval of the overlap function in an aerosol lidar with both elastic and Raman N2 and/or O2 channels used for independent measurements of aerosol backscatter and extinction coefficients. The formula requires only the measured, range-corrected elastic and the corresponding Raman signals, plus an assumed lidar ratio. We assess the influence of the lidar ratio error in the overlap function retrieval and present retrieval examples.
Abdanour Irbah, Julien Delanoë, Gerd-Jan van Zadelhoff, David P. Donovan, Pavlos Kollias, Bernat Puigdomènech Treserras, Shannon Mason, Robin J. Hogan, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 2795–2820, https://doi.org/10.5194/amt-16-2795-2023, https://doi.org/10.5194/amt-16-2795-2023, 2023
Short summary
Short summary
The Cloud Profiling Radar (CPR) and ATmospheric LIDar (ATLID) aboard the EarthCARE satellite are used to probe the Earth's atmosphere by measuring cloud and aerosol profiles. ATLID is sensitive to aerosols and small cloud particles and CPR to large ice particles, snowflakes and raindrops. It is the synergy of the measurements of these two instruments that allows a better classification of the atmospheric targets and the description of the associated products, which are the subject of this paper.
Mahesh Kovilakam, Larry Thomason, and Travis Knepp
Atmos. Meas. Tech., 16, 2709–2731, https://doi.org/10.5194/amt-16-2709-2023, https://doi.org/10.5194/amt-16-2709-2023, 2023
Short summary
Short summary
The paper describes SAGE III/ISS aerosol/cloud categorization and its implications on Global Space-based Stratospheric Aerosol Climatology (GloSSAC). The presence of data from the SAGE type of multi-wavelength measurements is important in GloSSAC. The new aerosol/cloud categorization method described in this paper will help retain more measurements, particularly in the lower stratosphere during and following a volcanic event and other processes.
Minseok Kim, Jhoon Kim, Hyunkwang Lim, Seoyoung Lee, Yeseul Cho, Huidong Yeo, and Sang-Woo Kim
Atmos. Meas. Tech., 16, 2673–2690, https://doi.org/10.5194/amt-16-2673-2023, https://doi.org/10.5194/amt-16-2673-2023, 2023
Short summary
Short summary
Aerosol height information is important when seeking an understanding of the vertical structure of the aerosol layer and long-range transport. In this study, a geometrical aerosol top height (ATH) retrieval using a parallax of two geostationary satellites is investigated. With sufficient longitudinal separation between the two satellites, a decent ATH product could be retrieved.
Jianglong Zhang, Jeffrey S. Reid, Steven D. Miller, Miguel Román, Zhuosen Wang, Robert J. D. Spurr, and Shawn Jaker
Atmos. Meas. Tech., 16, 2531–2546, https://doi.org/10.5194/amt-16-2531-2023, https://doi.org/10.5194/amt-16-2531-2023, 2023
Short summary
Short summary
We adapted the spherical harmonics discrete ordinate method 3-dimentional radiative transfer model (3-D RTM) and developed a nighttime 3-D RTM capability for simulating top-of-atmosphere radiances from artificial light sources for aerosol retrievals. Our study suggests that both aerosol optical depth and aerosol plume height can be effectively retrieved using nighttime observations over artificial light sources, through the newly developed radiative transfer modeling capability.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Cited articles
Ansmann, A., Tesche, M., Groß, S., Freudenthaler, V., Seifert, P., Hiebsch,
A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The
16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar
and AERONET photometer observations at Leipzig and Munich, Germany,
Geophys. Res. Lett., 37, L13810, https://doi.org/10.1029/2010GL043809,
2010. a
Arason, P., Petersen, G. N., and Bjornsson, H.: Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010, Earth Syst. Sci. Data, 3, 9–17, https://doi.org/10.5194/essd-3-9-2011, 2011. a
Balis, D., Koukouli, M.-E., Siomos, N., Dimopoulos, S., Mona, L., Pappalardo, G., Marenco, F., Clarisse, L., Ventress, L. J., Carboni, E., Grainger, R. G., Wang, P., Tilstra, G., van der A, R., Theys, N., and Zehner, C.: Validation of ash optical depth and layer height retrieved from passive satellite sensors using EARLINET and airborne lidar data: the case of the Eyjafjallajökull eruption, Atmos. Chem. Phys., 16, 5705–5720, https://doi.org/10.5194/acp-16-5705-2016, 2016. a, b
Blumstein, D., Chalon, G., Carlier, T., Buil, C., Hebert, P., Maciaszek, T.,
Ponce, G., Phulpin, T., Tournier, B., Simeoni, D., Astruc, P., Clauss, A.,
Kayal, G., and Jegou, R.: IASI instrument: Technical overview and measured
performances, P. Soc. Photo.-Opt. Ins., 5543, 196–207, https://doi.org/10.1117/12.560907, 2004. a
Bombrun, M., Jessop, D., Harris, A., and Barra, V.: An algorithm for the
detection and characterisation of volcanic plumes using thermal camera
imagery, J. Volcanol. Geoth. Res., 352, 26–37,
https://doi.org/10.1016/j.jvolgeores.2018.01.006,
2018. a
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments in
modelling and monitoring of volcanic ash clouds: outcomes from the first
IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, B. Volcanol., 74, 1–10, https://doi.org/10.1007/s00445-011-0508-6, 2012. a
Carboni, E., Grainger, R., Walker, J., Dudhia, A., and Siddans, R.: A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010, Atmos. Chem. Phys., 12, 11417–11434, https://doi.org/10.5194/acp-12-11417-2012, 2012. a, b
Carboni, E., Grainger, R. G., Mather, T. A., Pyle, D. M., Thomas, G. E., Siddans, R., Smith, A. J. A., Dudhia, A., Koukouli, M. E., and Balis, D.: The vertical distribution of volcanic SO2 plumes measured by IASI, Atmos. Chem. Phys., 16, 4343–4367, https://doi.org/10.5194/acp-16-4343-2016, 2016. a, b
Carn, S., Krueger, A., Krotkov, N., Yang, K., and Evans, K.: Tracking volcanic
sulfur dioxide clouds for aviation hazard mitigation, Nat. Hazards, 51,
325–343, https://doi.org/10.1007/s11069-008-9228-4, 2009. a
Casadevall, T. J.: The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts
on aircraft operations, J. Volcanol. Geoth. Res., 62,
301–316, https://doi.org/10.1016/0377-0273(94)90038-8,
1994. a
Chahine, M. T.: Remote Sounding of Cloudy Atmospheres. I. The Single Cloud
Layer, J. Atmos. Sci., 31, 233–243,
https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2,
1974. a
Chen, W. and Zhao, L.: Review – Volcanic Ash and its Influence on Aircraft
Engine Components, Procedia Engineer., 99, 795–803,
https://doi.org/10.1016/j.proeng.2014.12.604,
2015. a
Clarisse, L., Coheur, P. F., Prata, A. J., Hurtmans, D., Razavi, A., Phulpin, T., Hadji-Lazaro, J., and Clerbaux, C.: Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair, Atmos. Chem. Phys., 8, 7723–7734, https://doi.org/10.5194/acp-8-7723-2008, 2008. a
Clarisse, L., Prata, F., Lacour, J.-L., Hurtmans, D., Clerbaux, C., and Coheur,
P.-F.: A correlation method for volcanic ash detection using hyperspectral
infrared measurements, Geophys. Res. Lett., 37, L19806,
https://doi.org/10.1029/2010GL044828,
2010. a, b
Clarisse, L., Hurtmans, D., Clerbaux, C., Hadji-Lazaro, J., Ngadi, Y., and Coheur, P.-F.: Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI), Atmos. Meas. Tech., 5, 581–594, https://doi.org/10.5194/amt-5-581-2012, 2012. a
Clarisse, L., Coheur, P.-F., Theys, N., Hurtmans, D., and Clerbaux, C.: The 2011 Nabro eruption, a SO2 plume height analysis using IASI measurements, Atmos. Chem. Phys., 14, 3095–3111, https://doi.org/10.5194/acp-14-3095-2014, 2014. a
Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, Atmos. Chem. Phys., 9, 6041–6054, https://doi.org/10.5194/acp-9-6041-2009, 2009. a
Cooke, M. C., Francis, P. N., Millington, S., Saunders, R., and Witham, C.:
Detection of the Grímsvötn 2011 volcanic eruption plumes using infrared
satellite measurements, Atmos. Sci. Lett., 15, 321–327,
https://doi.org/10.1002/asl2.506,
2014. a
Corradini, S., Spinetti, C., Carboni, E., Tirelli, C., Buongiorno, M. F.,
Pugnaghi, S., and Gangale, G.: Mt. Etna tropospheric ash retrieval and
sensitivity analysis using moderate resolution imaging spectroradiometer
measurements, J. Appl. Remote Sens., 2, 023550,
https://doi.org/10.1117/1.3046674,
2008. a
Draxier, R. and Hess, G.: An overview of the HYSPLIT_4 modeling system of
trajectories, dispersion, and deposition, Australian Meteorological Magazine,
47, 295–308, 1998. a
Dunn, M. G. and Wade, D. P.: Influence of volcanic ash clouds on gas turbine
engines, in: Volcanic ash and aviation safety: Proceedings of the first
international symposium on volcanic ash and aviation safety, edited by:
Casadevall, T. J., pp. 107–117., U.S. Geological Survey Bulletin 2047, Denver, Colorado, 1994. a
Durant, A. J., Bonadonna, C., and Horwell, C. J.: Atmospheric and
Environmental Impacts of Volcanic Particulates, Elements, 6, 235,
https://doi.org/10.2113/gselements.6.4.235, 2010. a
Eckhardt, S., Prata, A. J., Seibert, P., Stebel, K., and Stohl, A.: Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling, Atmos. Chem. Phys., 8, 3881–3897, https://doi.org/10.5194/acp-8-3881-2008, 2008. a
Ellrod, G. P., Connell, B. H., and Hillger, D. W.: Improved detection of
airborne volcanic ash using multispectral infrared satellite data, J.
Geophys. Res.-Atmos., 108, 4356, https://doi.org/10.1029/2002JD002802,
2003. a
EUMETSAT: IASI: Atmospheric sounding Level 1C data products,
available at: http://catalogue.ceda.ac.uk/uuid/ea46600afc4559827f31dbfbb8894c2e (last access: 14 June 2019),
2009. a
Filizzola, C., Lacava, T., Marchese, F., Pergola, N., Scaffidi, I., and
Tramutoli, V.: Assessing RAT (Robust AVHRR Techniques) performances for
volcanic ash cloud detection and monitoring in near real-time: The 2002
eruption of Mt. Etna (Italy), Remote Sens. Environ., 107, 440–454,
https://doi.org/10.1016/j.rse.2006.09.020,
2007. a
Flemming, J. and Inness, A.: Volcanic sulfur dioxide plume forecasts based on
UV satellite retrievals for the 2011 Grímsvötn and the 2010
Eyjafjallajökull eruption, J. Geophys. Res.-Atmos.,
118, 10172–10189, https://doi.org/10.1002/jgrd.50753,
2013. a
Francis, P. N., Cooke, M. C., and Saunders, R. W.: Retrieval of physical
properties of volcanic ash using Meteosat: A case study from the 2010
Eyjafjallajökull eruption, J. Geophys. Res.-Atmos.,
117, D00U09, https://doi.org/10.1029/2011JD016788,
2012. a
Frey, R. A., Baum, B. A., Menzel, W. P., Ackerman, S. A., Moeller, C. C., and
Spinhirne, J. D.: A comparison of cloud top heights computed from airborne
lidar and MAS radiance data using CO2 slicing, J. Geophys. Res.-Atmos., 104, 24547–24555, https://doi.org/10.1029/1999JD900796,
1999. a, b
Gangale, G., Prata, A., and Clarisse, L.: The infrared spectral signature of
volcanic ash determined from high-spectral resolution satellite measurements,
Remote Sens. Environ., 114, 414–425,
https://doi.org/10.1016/j.rse.2009.09.007,
2010. a
Glaze, L. S., Wilson, L., and Mouginis, M. P. J.: Volcanic eruption plume top
topography and heights as determined from photoclinometric analysis of
satellite data, J. Geophys. Res.-Sol. Ea., 104,
2989–3001, https://doi.org/10.1029/1998JB900047,
1999. a
Grainger, R. G., Peters, D. M., Thomas, G. E., Smith, A. J. A., Siddans, R.,
Carboni, E., and Dudhia, A.: Measuring volcanic plume and ash properties from
space, Geological Society, London, Special Publications, 380,
https://doi.org/10.1144/SP380.7,
2013. a
Gudmundsson, M. T., Pedersen, R., Vogfjörd, K., Thorbjarnardóttir, B.,
Jakobsdóttir, S., and Roberts, M. J.: Eruptions of Eyjafjallajökull
Volcano, Iceland, EOS, Transactions American Geophysical Union, 91, 190–191,
https://doi.org/10.1029/2010EO210002,
2010. a
Guffanti, M. C. and Tupper, A. C.: Volcanic ash hazards and aviation risk:
Chapter 4, in: Volcanic hazards, risks and disasters, edited by: Papale, P.
and Shroder, J., pp. 87–108, Elsevier, Amsterdam,
https://doi.org/10.1016/B978-0-12-396453-3.00004-6, 2015. a
Guidard, V., Fourrié, N., Brousseau, P., and Rabier, F.: Impact of IASI
assimilation at global and convective scales and challenges for the
assimilation of cloudy scenes, Q. J. Roy. Meteor.
Soc., 137, 1975–1987, https://doi.org/10.1002/qj.928,
2011. a
Holasek, R. E., Self, S., and Woods, A. W.: Satellite observations and
interpretation of the 1991 Mount Pinatubo eruption plumes, J. Geophys. Res.-Sol. Ea., 101, 27635–27655,
https://doi.org/10.1029/96JB01179,
1996. a, b
Holz, R. E., Ackerman, S., Antonelli, P., Nagle, F., Knuteson, R. O., McGill,
M., Hlavka, D. L., and Hart, W. D.: An Improvement to the
High-Spectral-Resolution CO2-Slicing Cloud-Top Altitude Retrieval, J. Atmos. Ocean. Tech., 23, 653–670,
https://doi.org/10.1175/JTECH1877.1, 2006. a, b, c, d
Holz, R. E., Ackerman, S. A., Nagle, F. W., Frey, R., Dutcher, S., Kuehn,
R. E., Vaughan, M. A., and Baum, B.: Global Moderate Resolution Imaging
Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP,
J. Geophys. Res.-Atmos., 113, D00A19,
https://doi.org/10.1029/2008JD009837,
2008. a
Horwell, C. J.: Grain-size analysis of volcanic ash for the rapid assessment of
respiratory health hazard, Journal of Environmental Monitoring, 9,
1107–1115, https://doi.org/10.1039/B710583P, 2007. a
Horwell, C. J. and Baxter, P. J.: The respiratory health hazards of volcanic
ash: a review for volcanic risk mitigation, B. Volcanol., 69,
1–24, https://doi.org/10.1007/s00445-006-0052-y, 2006. a
Hunt, W. H., Winker, D. M., Vaughan, M. A., Powell, K. A., Lucker, P. L., and
Weimer, C.: CALIPSO Lidar Description and Performance Assessment, J.
Atmos. Ocean. Tech., 26, 1214–1228,
https://doi.org/10.1175/2009JTECHA1223.1, 2009. a
IATA Economic Breifing: The impact of Eyjafjallajökull volcanic ash plume,
International Air Transport Association,
available at: https://www.iata.org/whatwedo/Documents/economics/Volcanic-Ash-Plume-May2010.pdf (last access: 16 June 2019),
2010. a
Jones, A.: Atmospheric dispersion modelling at the Met Office, Weather, 59,
311–316, https://doi.org/10.1256/wea.106.04,
2004. a
Kerminen, V.-M., Niemi, J. V., Timonen, H., Aurela, M., Frey, A., Carbone, S., Saarikoski, S., Teinilä, K., Hakkarainen, J., Tamminen, J., Vira, J., Prank, M., Sofiev, M., and Hillamo, R.: Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011, Atmos. Chem. Phys., 11, 12227–12239, https://doi.org/10.5194/acp-11-12227-2011, 2011. a
Kristiansen, N. I., Stohl, A., Prata, A. J., Richter, A., Eckhardt, S.,
Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., and Stebel,
K.: Remote sensing and inverse transport modeling of the Kasatochi eruption
sulfur dioxide cloud, J. Geophys. Res.-Atmos., 115, D00L16,
https://doi.org/10.1029/2009JD013286,
2010. a
Lacasse, C., Karlsdóttir, S., Larsen, G., Soosalu, H., Rose, I., and Ernst,
G.: Weather radar observations of the Hekla 2000 eruption cloud, Iceland,
B. Volcanol., 66, 457–473, https://doi.org/10.1007/s00445-003-0329-3,
2004. a
Lavanant, L., Fourrié, N., Gambacorta, A., Giuseppe, G., Heilliette, S.,
I. Hilton, F., Kim, M.-J., McNally, P. A., Nishihata, H., Pavelin, G. E., and
Rabier, F.: Comparison of cloud products within IASI footprints for the
assimilation of cloudy radiances, Q. J. Roy. Meteor. Soc, 137, 1988–2003, 2011. a, b
Lechner, P., Tupper, A., Guffanti, M., Loughlin, S., and Casadevall, T.:
Volcanic Ash and Aviation – The Challenges of Real-Time, Global Communication
of a Natural Hazard, pp. 1–14, Advances in Volcanology, Springer, Berlin,
Heidelberg, https://doi.org/10.1007/11157_2016_49, 2017. a
Mackie, S. and Watson, M.: Probabilistic detection of volcanic ash using a
Bayesian approach, J. Geophys. Res.-Atmos., 119,
2409–2428, https://doi.org/10.1002/2013JD021077,
2014. a, b
Maes, K., Vandenbussche, S., Klüser, L., Kumps, N., and de Mazière, M.:
Vertical Profiling of Volcanic Ash from the 2011 Puyehue Cordón Caulle
Eruption Using IASI, Remote Sensing, 8, 103, https://doi.org/10.3390/rs8020103, 2016. a, b
Marenco, F., Johnson, B., Turnbull, K., Newman, S., Haywood, J., Webster, H.,
and Ricketts, H.: Airborne lidar observations of the 2010 Eyjafjallajökull
volcanic ash plume, J. Geophys. Res.-Atmos., 116, D00U05,
https://doi.org/10.1029/2011JD016396,
2011. a
Marzano, F., Corradini, S., Mereu, L., Kylling, A., Montopoli, M., Cimini, D.,
Merucci, L., and Stelitano, D.: Multisatellite Multisensor Observations of a
Sub-Plinian Volcanic Eruption: The 2015 Calbuco Explosive Event in Chile,
IEEE Transactions on Geoscience and Remote Sensing, 56,
2597–2612,
https://doi.org/10.1109/TGRS.2017.2769003, 2018. a
Mastin, L., Guffanti, M., Servranckx, R., Webley, P., Barsotti, S., Dean, K.,
Durant, A., Ewert, J., Neri, A., Rose, W., Schneider, D., Siebert, L.,
Stunder, B., Swanson, G., Tupper, A., Volentik, A., and Waythomas, C.: A
multidisciplinary effort to assign realistic source parameters to models of
volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geoth. Res., 186, 10–21,
https://doi.org/10.1016/j.jvolgeores.2009.01.008,
2009. a
Matthias, V., Aulinger, A., Bieser, J., Cuesta, J., Geyer, B., Langmann, B.,
Serikov, I., Mattis, I., Minikin, A., Mona, L., Quante, M., Schumann, U., and
Weinzierl, B.: The ash dispersion over Europe during the Eyjafjallajökull
eruption – Comparison of CMAQ simulations to remote sensing and air-borne
in-situ observations, Atmos. Environ., 48, 184–194,
https://doi.org/10.1016/j.atmosenv.2011.06.077,
2012. a
McNally, A. and Watts, P.: A cloud detection algorithm for
high-spectral-resolution infrared sounders, Q. J. Roy.
Meteor. Soc., 129, 3411–3423, https://doi.org/10.1256/qj.02.208, 2003. a
Menzel, W., Frey, R. A., Zhang, H., Wylie, D., Moeller, C., Holz, R., Maddux,
B., Baum, B., Strabala, K., and Gumley, L.: MODIS Global Cloud-Top Pressure
and Amount Estimation: Algorithm Description and Results, J. Appl. Meteorol. Clim., 47, 1175–1198, https://doi.org/10.1175/2007JAMC1705.1,
2008. a, b, c, d, e, f
Menzel, W. P., Smith, W. L., and Stewart, T. R.: Improved Cloud Motion Wind
Vector and Altitude Assignment Using VAS, J. Climate Appl.
Meteorol., 22, 377–384,
https://doi.org/10.1175/1520-0450(1983)022<0377:ICMWVA>2.0.CO;2,
1983. a, b, c, d
Miller, T. P. and Casadevall, T. J.: Volcanic ash hazards to aviation, in: Encyclopedia of volcanoes, edited by: Sigurdsson, H., Houghton, B., Rymer, H., Stix, J., and McNutt, S., 925–930, San
Diego, 2000. a
Moxnes, E. D., Kristiansen, N. I., Stohl, A., Clarisse, L., Durant, A., Weber,
K., and Vogel, A.: Separation of ash and sulfur dioxide during the 2011
Grímsvötn eruption, J. Geophys. Res.-Atmos., 119,
7477–7501, https://doi.org/10.1002/2013JD021129,
2014. a
Oppenheimer, C.: Review article: Volcanological applications of meteorological
satellites, Int. J. Remote Sens., 19, 2829–2864,
https://doi.org/10.1080/014311698214307, 1998. a
Pangaud, T., Fourrie, N., Guidard, V., Dahoui, M., and Rabier, F.: Assimilation
of AIRS Radiances Affected by Mid- to Low-Level Clouds, Mon. Weather
Rev., 137, 4276–4292, https://doi.org/10.1175/2009MWR3020.1, 2009. a
Pardini, F., Burton, M., de' Michieli Vitturi, M., Corradini, S., Salerno, G.,
Merucci, L., and Grazia, G. D.: Retrieval and intercomparison of volcanic
SO2 injection height and eruption time from satellite maps and
ground-based observations, J. Volcanol. Geoth. Res.,
331, 79–91, https://doi.org/10.1016/j.jvolgeores.2016.12.008,
2017. a
Pardini, F., Burton, M., Arzilli, F., Spina, G. L., and Polacci, M.: SO2
emissions, plume heights and magmatic processes inferred from satellite data:
The 2015 Calbuco eruptions, J. Volcanol. Geoth. Res., 361, 12–24,
https://doi.org/10.1016/j.jvolgeores.2018.08.001,
2018. a
Patrick, M. R.: Dynamics of Strombolian ash plumes from thermal video: Motion,
morphology, and air entrainment, J. Geophys. Res.-Sol. Ea., 112, B06202, https://doi.org/10.1029/2006JB004387,
2007. a
Pavolonis, M. J., Heidinger, A. K., and Sieglaff, J.: Automated retrievals of
volcanic ash and dust cloud properties from upwelling infrared measurements,
J. Geophys. Res.-Atmos., 118, 1436–1458,
https://doi.org/10.1002/jgrd.50173,
2013. a
Pergola, N., Tramutoli, V., Marchese, F., Scaffidi, I., and Lacava, T.:
Improving volcanic ash cloud detection by a robust satellite technique,
Remote Sens. Environ., 90, 1–22,
https://doi.org/10.1016/j.rse.2003.11.014,
2004. a
Peters, D.: Aerosol Refractive Index Archive ARIA, available at: http://eodg.atm.ox.ac.uk/ARIA/index.html (last access: 15 June 2019), 2010. a
Petersen, G. N.: A short meteorological overview of the Eyjafjallajökull
eruption 14 April–23 May 2010, Weather, 65, 203–207,
https://doi.org/10.1002/wea.634,
2010. a
Petersen, G. N., Bjornsson, H., Arason, P., and von Löwis, S.: Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland, Earth Syst. Sci. Data, 4, 121–127, https://doi.org/10.5194/essd-4-121-2012, 2012. a
Pieri, D., Ma, C., Simpson, J. J., Hufford, G., Grindle, T., and Grove, C.:
Analyses of in-situ airborne volcanic ash from the February 2000 eruption of
Hekla Volcano, Iceland, Geophys. Res. Lett., 29, 19-1–19-4,
https://doi.org/10.1029/2001GL013688, 2002. a
Prata, A. J.: Observations of volcanic ash clouds in the 10–12 µm window using
AVHRR/2 data, Int. J. Remote Sens., 10, 751–761,
https://doi.org/10.1080/01431168908903916,
1989a. a
Prata, A. J.: Infrared radiative transfer calculations for volcanic ash clouds,
Geophys. Res. Lett., 16, 1293–1296, https://doi.org/10.1029/GL016i011p01293,
1989b. a
Prata, A. J. and Grant, I. F.: Retrieval of microphysical and morphological
properties of volcanic ash plumes from satellite data: Application to Mt
Ruapehu, New Zealand, Q. J. Roy. Meteor. Soc.,
127, 2153–2179, https://doi.org/10.1002/qj.49712757615,
2001a. a
Prata, A. J. and Tupper, A.: Aviation hazards from volcanoes: the state of the
science, Nat. Hazards, 51, 239–244, https://doi.org/10.1007/s11069-009-9415-y, 2009. a
Prata, A. J. and Turner, P.: Cloud-top height determination using ATSR data,
Remote Sens. Environ., 59, 1–13,
https://doi.org/10.1016/S0034-4257(96)00071-5,
1997. a
Prata, G., Ventress, L., Carboni, E., Mather, T., Grainger, R., and Pyle, D.: A
New Parameterization of Volcanic Ash Complex Refractive Index Based on NBO/T
and SiO2 Content, J. Geophys. Res.-Atmos., 124,
1779–1797, https://doi.org/10.1029/2018JD028679, 2019. a
Remedios, J. J., Leigh, R. J., Waterfall, A. M., Moore, D. P., Sembhi, H., Parkes, I., Greenhough, J., Chipperfield, M. P., and Hauglustaine, D.: MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets, Atmos. Chem. Phys. Discuss., 7, 9973–10017, https://doi.org/10.5194/acpd-7-9973-2007, 2007. a, b
Richards, M., Ackerman, S., J. Pavolonis, M., F. Feltz, W., and Tupper, A.:
Volcanic ash cloud heights using the MODIS CO2-slicing algorithm, 12th Conference on Aviation Range and Aerospace Meteorology, Atlanta, 27 January–3 February 2006, available at: https://ams.confex.com/ams/Annual2006/webprogram/Paper104055.html (last access: 16 June 2019), 2006. a
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38,
191–219, https://doi.org/10.1029/1998RG000054,
2000. a
Sahetapy-Engel, S. T. and Harris, A. J. L.: Thermal-image-derived dynamics of
vertical ash plumes at Santiaguito volcano, Guatemala, B. Volcanol., 71, 827–830, https://doi.org/10.1007/s00445-009-0284-8, 2009. a
Saunders, R., Matricardi, M., and Brunel, P.: An Improved Fast Radiative
Transfer Model for Assimilation of Satellite Radiance Observations, Q.
J. Roy. Meteor. Soc., 125, 1407–1425,
https://doi.org/10.1002/qj.1999.49712555615, 1998. a
Sears, T., Thomas, G., Carboni, E., Smith, A., and Grainger, R.: SO2 as a
possible proxy for volcanic ash in aviation hazard avoidance, J. Geophys. Res.-Atmos., 118, 5698–5709,
https://doi.org/10.1002/jgrd.50505,
2013. a
Smith, W. L. and Frey, R.: On Cloud Altitude Determinations from High
Resolution Interferometer Sounder (HIS) Observations, J. Appl.
Meteorol., 29, 658–662,
https://doi.org/10.1175/1520-0450(1990)029<0658:OCADFH>2.0.CO;2,
1990. a
Smith, W. L. and Platt, C. M. R.: Comparison of Satellite-Deduced Cloud Heights
with Indications from Radiosonde and Ground-Based Laser Measurements, J. Appl. Meteorol., 17, 1796–1802,
https://doi.org/10.1175/1520-0450(1978)017<1796:COSDCH>2.0.CO;2,
1978. a, b, c
Someya, Y., Imasu, R., Saitoh, N., Ota, Y., and Shiomi, K.: A development of cloud top height retrieval using thermal infrared spectra observed with GOSAT and comparison with CALIPSO data, Atmos. Meas. Tech., 9, 1981–1992, https://doi.org/10.5194/amt-9-1981-2016, 2016. a, b, c
Sparks, R., Burski, M., Carey, S., Gilbert, J., Glaze, L., Sigurdsson, H., and
Woods, A.: Volcanic Plumes, John Wiley & Sons, Chichester, UK, 1997. a
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, B. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015. a
Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Lunder, C., Maione, M., Mühle, J., O'Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons, Atmos. Chem. Phys., 9, 1597–1620, https://doi.org/10.5194/acp-9-1597-2009, 2009. a
Stohl, A., Prata, A. J., Eckhardt, S., Clarisse, L., Durant, A., Henne, S., Kristiansen, N. I., Minikin, A., Schumann, U., Seibert, P., Stebel, K., Thomas, H. E., Thorsteinsson, T., Tørseth, K., and Weinzierl, B.: Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11, 4333–4351, https://doi.org/10.5194/acp-11-4333-2011, 2011. a, b, c
Taylor, I., Mackie, S., and Watson, M.: Investigating the use of the Saharan
dust index as a tool for the detection of volcanic ash in SEVIRI imagery,
J. Volcanol. Geoth. Res., 304, 126–141,
https://doi.org/10.1016/j.jvolgeores.2015.08.014,
2015. a, b
Taylor, I. A., Preston, J., Carboni, E., Mather, T. A., Grainger, R. G., Theys,
N., Hidalgo, S., and Kilbride, B. M.: Exploring the Utility of IASI for
Monitoring Volcanic SO2 Emissions, J. Geophys. Res.-Atmos., 123, 5588–5606, https://doi.org/10.1002/2017JD027109,
2018. a
Tesche, M., Glantz, P., Johansson, C., Norman, M., Hiebsch, A., Ansmann, A.,
Althausen, D., Engelmann, R., and Seifert, P.: Volcanic ash over Scandinavia
originating from the Grímsvötn eruptions in May 2011, J. Geophys. Res.-Atmos., 117, D09201, https://doi.org/10.1029/2011JD017090,
2012. a
Thomas, G. E. and Siddans, R.: Development of OCA type processors to volcanic
ash detection and retrieval, Final Report EUMETSAT, RFQ 13/715490, RAL Space,
Harwell, Didcot, UK, 2015. a
Thomas, H. E. and Prata, A. J.: Sulphur dioxide as a volcanic ash proxy during the April–May 2010 eruption of Eyjafjallajökull Volcano, Iceland, Atmos. Chem. Phys., 11, 6871–6880, https://doi.org/10.5194/acp-11-6871-2011, 2011. a
Thomas, H. E. and Watson, I. M.: Observations of volcanic emissions from space:
current and future perspectives, Nat. Hazards, 54, 323–354,
https://doi.org/10.1007/s11069-009-9471-3, 2010. a
Tupper, A., Itikarai, I., Richards, M., Prata, F., Carn, S., and Rosenfeld, D.:
Facing the Challenges of the International Airways Volcano Watch: The 2004/05
Eruptions of Manam, Papua New Guinea, Weather Forecast., 22, 175–191,
https://doi.org/10.1175/WAF974.1,
2007. a, b
Vernier, J.-P., Fairlie, T. D., Murray, J. J., Tupper, A., Trepte, C., Winker,
D., Pelon, J., Garnier, A., Jumelet, J., Pavolonis, M., Omar, A. H., and
Powell, K. A.: An Advanced System to Monitor the 3D Structure of Diffuse
Volcanic Ash Clouds, J. Appl. Meteorol. Clim., 52,
2125–2138, https://doi.org/10.1175/JAMC-D-12-0279.1, 2013. a
Walker, J. C., Dudhia, A., and Carboni, E.: An effective method for the detection of trace species demonstrated using the MetOp Infrared Atmospheric Sounding Interferometer, Atmos. Meas. Tech., 4, 1567–1580, https://doi.org/10.5194/amt-4-1567-2011, 2011. a
Walker, J., Carboni, E., Dudhia, A., and Grainger, R.: Improved detection of
sulphur dioxide in volcanic plumes using satellite-based hyperspectral
infrared measurements: Application to the Eyjafjallajökull 2010
eruption, J. Geophys. Res.-Atmos., 117, D00U16, https://doi.org/10.1029/2011JD016810,
2012. a, b, c
Watson, I., Realmuto, V., Rose, W., Prata, A., Bluth, G., Gu, Y., Bader, C.,
and Yu, T.: Thermal infrared remote sensing of volcanic emissions using the
moderate resolution imaging spectroradiometer, J. Volcanol. Geoth. Res., 135, 75–89, https://doi.org/10.1016/j.jvolgeores.2003.12.017, 2004. a
Webb, E. B., Varley, N. R., Pyle, D. M., and Mather, T. A.: Thermal imaging and
analysis of short-lived Vulcanian explosions at Volcán de Colima, Mexico,
J. Volcanol. Geoth. Res., 278–279, 132–145,
https://doi.org/10.1016/j.jvolgeores.2014.03.013,
2014. a
Weber, K., Eliasson, J., Vogel, A., Fischer, C., Pohl, T., van Haren, G.,
Meier, M., Grobéty, B., and Dahmann, D.: Airborne in-situ investigations of
the Eyjafjallajökull volcanic ash plume on Iceland and over north-western
Germany with light aircrafts and optical particle counters, Atmos. Environ., 48, 9–21,
https://doi.org/10.1016/j.atmosenv.2011.10.030,
2012. a
Webster, H. N., Thomson, D. J., Johnson, B. T., Heard, I. P. C., Turnbull, K.,
Marenco, F., Kristiansen, N. I., Dorsey, J., Minikin, A., Weinzierl, B.,
Schumann, U., Sparks, R. S. J., Loughlin, S. C., Hort, M. C., Leadbetter,
S. J., Devenish, B. J., Manning, A. J., Witham, C. S., Haywood, J. M., and
Golding, B. W.: Operational prediction of ash concentrations in the distal
volcanic cloud from the 2010 Eyjafjallajökull eruption, J. Geophys. Res.-Atmos., 117, D00U08, https://doi.org/10.1029/2011JD016790,
2012. a
Wen, S. and Rose, W.: Retrieval of sizes and total masses of particles in
volcanic clouds using AVHRR bands 4 and 5, J. Geophys. Res.-Atmos., 99, 5421–5431, https://doi.org/10.1029/93JD03340,
1994. a
Western, L. M., Rougier, J., and Watson, I. M.: Decision theory-based detection
of atmospheric natural hazards from satellite imagery using the example of
volcanic ash, Q. J. Roy. Meteor. Soc., 144,
581–587, https://doi.org/10.1002/qj.3230,
2017. a
Wilkins, K., Western, L., and Watson, I.: Simulating atmospheric transport of
the 2011 Grímsvötn ash cloud using a data insertion update scheme,
Atmos. Environ., 141, 48–59,
https://doi.org/10.1016/j.atmosenv.2016.06.045,
2016. a
Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D. M.,
Cole, J. W., Wardman, J., Wilson, G., and Barnard, S. T.: Volcanic ash
impacts on critical infrastructure, Phys. Chem. Earth, 45–46, 5–23, https://doi.org/10.1016/j.pce.2011.06.006,
2012. a
Wilson, T. M., Jenkins, S., and Stewart, C.: Chapter 3 – Impacts from Volcanic
Ash Fall, in: Volcanic Hazards, Risks and Disasters, edited by: Shroder, J. F.
and Papale, P., Elsevier, Boston, 47–86,
https://doi.org/10.1016/B978-0-12-396453-3.00003-4,
2015. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP Data
Processing Algorithms, J. Atmos. Ocean. Tech., 26,
2310–2323, https://doi.org/10.1175/2009JTECHA1281.1, 2009. a
Winker, D. M., Liu, Z., Omar, A., Tackett, J., and Fairlie, D.: CALIOP
observations of the transport of ash from the Eyjafjallajökull volcano in
April 2010, J. Geophys. Res.-Atmos., 117, D00U15,
https://doi.org/10.1029/2011JD016499,
2012. a
Witham, C., Webster, H., Hort, M., Jones, A., and Thomson, D.: Modelling
concentrations of volcanic ash encountered by aircraft in past eruptions,
Atmos. Environ., 48, 219–229,
https://doi.org/10.1016/j.atmosenv.2011.06.073,
2012. a
Wylie, D. P. and Menzel, W. P.: Two Years of Cloud Cover Statistics Using VAS,
J. Climate, 2, 380–392,
https://doi.org/10.1175/1520-0442(1989)002<0380:TYOCCS>2.0.CO;2,
1989. a
Yu, T., Rose, W. I., and Prata, A. J.: Atmospheric correction for
satellite-based volcanic ash mapping and retrievals using “split window”
IR data from GOES and AVHRR, J. Geophys. Res.-Atmos.,
107, 4311, https://doi.org/10.1029/2001JD000706,
2002. a
Zakšek, K., Hort, M., Zaletelj, J., and Langmann, B.: Monitoring volcanic ash cloud top height through simultaneous retrieval of optical data from polar orbiting and geostationary satellites, Atmos. Chem. Phys., 13, 2589–2606, https://doi.org/10.5194/acp-13-2589-2013, 2013. a, b
Zhang, H. and Menzel, W. P.: Improvement in thin cirrus retrievals using an
emissivity–adjusted CO2 slicing algorithm, J. Geophys. Res.-Atmos., 107, AAC 2-1–AAC 2-11, https://doi.org/10.1029/2001JD001037,
2002. a
Zhu, L., Li, J., Zhao, Y., Gong, H., and Li, W.: Retrieval of volcanic ash
height from satellite-based infrared measurements, J. Geophys. Res.-Atmos., 122, 5364–5379, https://doi.org/10.1002/2016JD026263,
2017. a
Short summary
Volcanic ash is a hazard associated with volcanoes. Knowing an ash cloud’s location is essential for minimising the hazard. This includes knowing the height. This study adapted a well-known technique for obtaining the height of meteorological clouds, known as CO2 slicing, for volcanic ash. Modelled data were used to refine the method and then demonstrate that the technique could work for volcanic ash. It was then successfully applied to data from the Eyjafjallajökull and Grímsvötn eruptions.
Volcanic ash is a hazard associated with volcanoes. Knowing an ash cloud’s location is...