Articles | Volume 12, issue 7
https://doi.org/10.5194/amt-12-3885-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-3885-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Classification of iron oxide aerosols by a single particle soot photometer using supervised machine learning
Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
NOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO, USA
Related authors
Aaryan Doshi and Kara D. Lamb
Atmos. Meas. Tech., 18, 7767–7786, https://doi.org/10.5194/amt-18-7767-2025, https://doi.org/10.5194/amt-18-7767-2025, 2025
Short summary
Short summary
Aerosols that absorb sunlight play key role in Earth's climate. To improve detection of light-absorbing aerosols measured by the Single Particle Soot Photometer, we explore unsupervised machine learning. Unlike earlier methods that require labeled training data, our approach learns patterns directly from unlabeled data. This makes it more applicable to atmospheric observations. We show this method can be used to quantify how similar aerosols are to one another and improve aerosol classification.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Kara D. Lamb, Jerry Y. Harrington, Benjamin W. Clouser, Elisabeth J. Moyer, Laszlo Sarkozy, Volker Ebert, Ottmar Möhler, and Harald Saathoff
Atmos. Chem. Phys., 23, 6043–6064, https://doi.org/10.5194/acp-23-6043-2023, https://doi.org/10.5194/acp-23-6043-2023, 2023
Short summary
Short summary
This study investigates how ice grows directly from vapor in cirrus clouds by comparing observations of populations of ice crystals growing in a cloud chamber against models developed in the context of single-crystal laboratory studies. We demonstrate that previous discrepancies between different experimental measurements do not necessarily point to different physical interpretations but are rather due to assumptions that were made in terms of how experiments were modeled in previous studies.
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021, https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary
Short summary
Microscopic particles interact with sunlight and affect the earth's climate in ways that are not fully understood. Aerosols from wildfire smoke present particular challenges due to their complexity in shape and composition. We demonstrate that we can experimentally measure aerosol optical properties for many types of smoke particles, using measurements of smoke from controlled burns, but that the method does not work well for smoke with high soot content.
Aaryan Doshi and Kara D. Lamb
Atmos. Meas. Tech., 18, 7767–7786, https://doi.org/10.5194/amt-18-7767-2025, https://doi.org/10.5194/amt-18-7767-2025, 2025
Short summary
Short summary
Aerosols that absorb sunlight play key role in Earth's climate. To improve detection of light-absorbing aerosols measured by the Single Particle Soot Photometer, we explore unsupervised machine learning. Unlike earlier methods that require labeled training data, our approach learns patterns directly from unlabeled data. This makes it more applicable to atmospheric observations. We show this method can be used to quantify how similar aerosols are to one another and improve aerosol classification.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Kara D. Lamb, Jerry Y. Harrington, Benjamin W. Clouser, Elisabeth J. Moyer, Laszlo Sarkozy, Volker Ebert, Ottmar Möhler, and Harald Saathoff
Atmos. Chem. Phys., 23, 6043–6064, https://doi.org/10.5194/acp-23-6043-2023, https://doi.org/10.5194/acp-23-6043-2023, 2023
Short summary
Short summary
This study investigates how ice grows directly from vapor in cirrus clouds by comparing observations of populations of ice crystals growing in a cloud chamber against models developed in the context of single-crystal laboratory studies. We demonstrate that previous discrepancies between different experimental measurements do not necessarily point to different physical interpretations but are rather due to assumptions that were made in terms of how experiments were modeled in previous studies.
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021, https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary
Short summary
Microscopic particles interact with sunlight and affect the earth's climate in ways that are not fully understood. Aerosols from wildfire smoke present particular challenges due to their complexity in shape and composition. We demonstrate that we can experimentally measure aerosol optical properties for many types of smoke particles, using measurements of smoke from controlled burns, but that the method does not work well for smoke with high soot content.
Cited articles
Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J., Cavalli, F., Cozic, J., Diapouli, E., Eleftheriadis, K., Genberg, P. J., Gonzalez, C., Gysel, M., John, A., Kirchstetter, T. W., Kuhlbusch, T. A. J., Laborde, M., Lack, D., Müller, T., Niessner, R., Petzold, A., Piazzalunga, A., Putaud, J. P., Schwarz, J., Sheridan, P., Subramanian, R., Swietlicki, E., Valli, G., Vecchi, R., and Viana, M.: Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations, Atmos. Meas. Tech., 5, 1869–1887, https://doi.org/10.5194/amt-5-1869-2012, 2012. a
Christopoulos, C. D., Garimella, S., Zawadowicz, M. A., Möhler, O., and Cziczo, D. J.: A machine learning approach to aerosol classification for single-particle mass spectrometry, Atmos. Meas. Tech., 11, 5687–5699, https://doi.org/10.5194/amt-11-5687-2018, 2018. a, b
Dahlkötter, F., Gysel, M., Sauer, D., Minikin, A., Baumann, R., Seifert, P., Ansmann, A., Fromm, M., Voigt, C., and Weinzierl, B.: The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – aerosol properties and black carbon mixing state, Atmos. Chem. Phys., 14, 6111–6137, https://doi.org/10.5194/acp-14-6111-2014, 2014. a
Freund, Y. and Schapire, R. E.: A decision-theoretic generalization of on-line
learning and an application to boosting, J. Comput. Syst.
Sci., 55, 119–139, 1997.
Gao, R., Schwarz, J., Kelly, K., Fahey, D., Watts, L., Thompson, T., Spackman,
J., Slowik, J., Cross, E., Han, J.-H., Davidovits, P., Onasch, T. B., and Worsnop, D. R.: A novel method for estimating
light-scattering properties of soot aerosols using a modified single-particle
soot photometer, Aerosol Sci. Technol., 41, 125–135, 2007. a, b
Gysel, M., Laborde, M., Mensah, A. A., Corbin, J. C., Keller, A., Kim, J., Petzold, A., and Sierau, B.: Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles, Atmos. Meas. Tech., 5, 3099–3107, https://doi.org/10.5194/amt-5-3099-2012, 2012. a
Heimerl, K., Weinzierl, B., Gysel, M., Baumgardner, D., Kok, G., Linke, C.,
Schnaiter, M., Schwarz, J., Sheridan, P., Subramanian, R., and Walker, J.: Using a
Single Particle Soot Photometer to detect and distinguish different absorbing
aerosol types, European Aerosol Conference, 44, 663–675,
2012. a
Huffman, D. R. and Stapp, J. L.: Optical measurements on solids of possible
interstellar importance, in: Interstellar dust and related topics,
Springer, 297–301, 1973. a
Ito, A., Lin, G., and Penner, J. E.: Radiative forcing by light-absorbing
aerosols of pyrogenetic iron oxides, Sci. Rep., 8, 1–11, 2018. a
Jeong, G. Y. and Nousiainen, T.: TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling, Atmos. Chem. Phys., 14, 7233–7254, https://doi.org/10.5194/acp-14-7233-2014, 2014. a
Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., Koike, M.,
and Miyakawa, T.: Consistency and traceability of black carbon measurements
made by laser-induced incandescence, thermal-optical transmittance, and
filter-based photo-absorption techniques, Aerosol Sci. Technol., 45,
295–312, 2011. a
Kutchko, B. G. and Kim, A. G.: Fly ash characterization by SEM–EDS, Fuel, 85,
2537–2544, 2006. a
Li, W., Xu, L., Liu, X., Zhang, J., Lin, Y., Yao, X., Gao, H., Zhang, D., Chen,
J., Wang, W., Harrison, R. M., Zhang, X., Shao, L., Fu, P., Nenes, A., and Shi, Z.: Air pollution–aerosol interactions produce more
bioavailable iron for ocean ecosystems, Sci. Adv., 3, e1601749, https://doi.org/10.1126/sciadv.1601749,
2017. a, b, c
Liati, A., Pandurangi, S. S., Boulouchos, K., Schreiber, D., and Dasilva, Y.
A. R.: Metal nanoparticles in diesel exhaust derived by in-cylinder melting
of detached engine fragments, Atmos. Environ., 101, 34–40, 2015. a
Liu, D., Taylor, J. W., Crosier, J., Marsden, N., Bower, K. N., Lloyd, G., Ryder, C. L., Brooke, J. K., Cotton, R., Marenco, F., Blyth, A., Cui, Z., Estelles, V., Gallagher, M., Coe, H., and Choularton, T. W.: Aircraft and ground measurements of dust aerosols over the west African coast in summer 2015 during ICE-D and AER-D, Atmos. Chem. Phys., 18, 3817–3838, https://doi.org/10.5194/acp-18-3817-2018, 2018. a, b, c, d
Maher, B. A., Ahmed, I. A., Karloukovski, V., MacLaren, D. A., Foulds, P. G.,
Allsop, D., Mann, D. M., Torres-Jardón, R., and Calderon-Garciduenas, L.:
Magnetite pollution nanoparticles in the human brain, P.
Natl. Acad. Sci. USA, 113, 10797–10801, 2016. a
Matsui, H., Mahowald, N. M., Moteki, N., Hamilton, D. S., Ohata, S., Yoshida,
A., Koike, M., Scanza, R. A., and Flanner, M. G.: Anthropogenic combustion
iron as a complex climate forcer, Nat. Commun., 9, 1593, https://doi.org/10.1038/s41467-018-03997-0, 2018. a, b
Moteki, N., Kondo, Y., and Nakamura, S.-I.: Method to measure refractive
indices of small nonspherical particles: Application to black carbon
particles, J. Aerosol Sci., 41, 513–521, 2010. a
Müllner, D.: Modern hierarchical, agglomerative clustering algorithms,
arXiv preprint arXiv:1109.2378, 1–29, 2011. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine learning in Python, J. Mach. Learn.
Res., 12, 2825–2830, 2011. a, b, c, d
Rocha-Lima, A., Martins, J. V., Remer, L. A., Krotkov, N. A., Tabacniks, M. H., Ben-Ami, Y., and Artaxo, P.: Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash, Atmos. Chem. Phys., 14, 10649–10661, https://doi.org/10.5194/acp-14-10649-2014, 2014. . a
Robinson, N. H., Allan, J. D., Huffman, J. A., Kaye, P. H., Foot, V. E., and Gallagher, M.: Cluster analysis of WIBS single-particle bioaerosol data, Atmos. Meas. Tech., 6, 337–347, https://doi.org/10.5194/amt-6-337-2013, 2013.
a, b
Ruske, S., Topping, D. O., Foot, V. E., Kaye, P. H., Stanley, W. R., Crawford, I., Morse, A. P., and Gallagher, M. W.: Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer, Atmos. Meas. Tech., 10, 695–708, https://doi.org/10.5194/amt-10-695-2017, 2017. a, b
Ruske, S., Topping, D. O., Foot, V. E., Morse, A. P., and Gallagher, M. W.:
Machine learning for improved data analysis of biological aerosol using the
WIBS, Atmos. Meas. Tech., 11, 6203–6230, https://doi.org/10.5194/amt-11-6203-2018, 2018. a, b
Savage, N. J. and Huffman, J. A.: Evaluation of a hierarchical agglomerative clustering method applied to WIBS laboratory data for improved discrimination of biological particles by comparing data preparation techniques, Atmos. Meas. Tech., 11, 4929–4942, https://doi.org/10.5194/amt-11-4929-2018, 2018. a, b
Schwarz, J., Gao, R., Fahey, D., Thomson, D., Watts, L., Wilson, J., Reeves,
J., Darbeheshti, M., Baumgardner, D., Kok, G., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Kärcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle
measurements of midlatitude black carbon and light-scattering aerosols from
the boundary layer to the lower stratosphere, J. Geophys.
Res.-Atmos., 111, 1–15, 2006. a, b, c, d, e, f
Sedlacek III, A. J., Lewis, E. R., Kleinman, L., Xu, J., and Zhang, Q.:
Determination of and evidence for non-core-shell structure of particles
containing black carbon using the Single-Particle Soot Photometer (SP2),
Geophys. Res. Lett., 39, L06802, https://doi.org/10.1029/2012GL050905, 2012. a, b
Yoshida, A., Ohata, S., Moteki, N., Adachi, K., Mori, T., Koike, M., and
Takami, A.: Abundance and emission flux of the anthropogenic iron oxide
aerosols from the East Asian continental outflow, J. Geophys.
Res.-Atmos., 123, 11194–11209, https://doi.org/10.1029/2018JD028665, 2018. a, b, c, d, e, f, g
Zawadowicz, M. A., Froyd, K. D., Murphy, D. M., and Cziczo, D. J.: Improved
identification of primary biological aerosol particles
using single-particle mass spectrometry, Atmos. Chem. Phys., 17, 7193–7212, https://doi.org/10.5194/acp-17-7193-2017, 2017. a
using single-particle mass spectrometry, Atmos. Chem. Phys., 17, 7193–7212, https://doi.org/10.5194/acp-17-7193-2017, 2017. a
Short summary
Recent atmospheric observations have indicated emissions of iron-oxide-containing aerosols from anthropogenic sources could be 8x higher than previous estimates, leading models to underestimate their climate impact. Previous studies have shown the single particle soot photometer (SP2) can quantify the atmospheric abundance of these aerosols. Here, I explore a machine learning approach to improve SP2 detection, significantly reducing misclassifications of other aerosols as iron oxide aerosols.
Recent atmospheric observations have indicated emissions of iron-oxide-containing aerosols from...