Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-4829-2019
https://doi.org/10.5194/amt-12-4829-2019
Research article
 | 
10 Sep 2019
Research article |  | 10 Sep 2019

Assimilation of GNSS tomography products into the Weather Research and Forecasting model using radio occultation data assimilation operator

Natalia Hanna, Estera Trzcina, Gregor Möller, Witold Rohm, and Robert Weber

Related authors

Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022,https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF
Witold Rohm, Jakub Guzikowski, Karina Wilgan, and Maciej Kryza
Atmos. Meas. Tech., 12, 345–361, https://doi.org/10.5194/amt-12-345-2019,https://doi.org/10.5194/amt-12-345-2019, 2019
Short summary
Atmospheric bending effects in GNSS tomography
Gregor Möller and Daniel Landskron
Atmos. Meas. Tech., 12, 23–34, https://doi.org/10.5194/amt-12-23-2019,https://doi.org/10.5194/amt-12-23-2019, 2019
Short summary
Cross-validation of GPS tomography models and methodological improvements using CORS network
Hugues Brenot, Witold Rohm, Michal Kačmařík, Gregor Möller, André Sá, Damian Tondaś, Lukas Rapant, Riccardo Biondi, Toby Manning, and Cédric Champollion
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-292,https://doi.org/10.5194/amt-2018-292, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023,https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023,https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023,https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023,https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary

Cited articles

Adavi, Z. and Mashhadi-Hossainali, M.: 4D-tomographic reconstruction of water vapor using the hybrid regularization technique with application to the North West of Iran, Adv. Space Res., 55, 1845–1854, https://doi.org/10.1016/j.asr.2015.01.025, 2015. 
Andersson, E.: Statement of Guidance for Global Numerical Weather Prediction (NWP), World Meteorological Organisation, Geneva, 2018. 
Bauer, H. S., Wulfmeyer, V., Schwitalla, T., Zus, F., and Grzeschik, M.: Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system, Tellus A, 63, 263–282, https://doi.org/10.1111/j.1600-0870.2010.00489.x, 2011. 
Bender, M., Dick, G., Ge, M., Deng, Z., Wickert, J., Kahle, H. G., Raabe, A., and Tetzlaff, G.: Development of a GNSS water vapour tomography system using algebraic reconstruction techniques, Adv. Space Res., 47, 1704–1720, https://doi.org/10.1016/j.asr.2010.05.034, 2011. 
Benevides, P., Catalao, J., Nico, G., and Miranda, P. M.: Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model, PROC SPIE, 9640, 96400R, https://doi.org/10.1117/12.2194857, 2015. 
Download
Short summary
In the study, the potential of GNSS tomography as an important supplementary data source for numerical weather prediction models was examined. We used two GNSS tomography models (TUW, WUELS) in different configurations. The GNSS tomography outputs were assimilated into the WRF model using a radio occultation observations operator (non-standard approach). Promising results show improvement in the weather forecasting of relative humidity and temperature during heavy-precipitation events.