Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-4903-2019
https://doi.org/10.5194/amt-12-4903-2019
Research article
 | 
11 Sep 2019
Research article |  | 11 Sep 2019

All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud

Alan J. Geer, Stefano Migliorini, and Marco Matricardi

Related authors

Assessment and application of melting layer simulations for spaceborne radars within the RTTOV-SCATT v13.1 model
Rohit Mangla, Mary Borderies, Philippe Chambon, Alan Geer, and James Hocking
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-131,https://doi.org/10.5194/amt-2024-131, 2024
Preprint under review for AMT
Short summary
Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021,https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021,https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Introducing hydrometeor orientation into all-sky microwave and submillimeter assimilation
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021,https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Correlated observation error models for assimilating all-sky infrared radiances
Alan J. Geer
Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019,https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025,https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary

Cited articles

Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteor. Soc., 133, 631–642, 2007. a
Aumann, H. H., Chen, X., Fishbein, E., Geer, A., Havemann, S., Huang, X., Liu, X., Liuzzi, G., DeSouza-Machado, S., Manning, E. M., Masiello, G., Matricardi, M., Moradi, I., Natraj, V., Serio, C., Strow, L., Vidot, J., Wilson, R. C., Wu, W., Yang, Q., and Yung, Y. L.: Evaluation of Radiative Transfer Models with Clouds, J. Geophys. Res.-Atmos., 123, 6142–6157, 2018. a, b
Baran, A., Bodas-Salcedo, A., Cotton, R., and Lee, C.: Simulating the equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model of cirrus ice crystals: a test of the Met Office global numerical weather prediction model, Q. J. Roy. Meteor. Soc., 137, 1547–1560, 2011. a
Baran, A. J. and Labonnote, L.-C.: A self-consistent scattering model for cirrus. I: The solar region, Q. J. Roy. Meteor. Soc., 133, 1899–1912, 2007. a
Bauer, P., Geer, A. J., Lopez, P., and Salmond, D.: Direct 4D-Var assimilation of all-sky radiances: Part I. Implementation, Q. J. Roy. Meteor. Soc., 136, 1868–1885, 2010. a, b, c, d, e, f, g, h
Download
Short summary
Satellite radiance observations have only recently become usable in conditions of cloud and precipitation for the initialization of weather forecasts. The move to all-sky assimilation started with data from the microwave part of the spectrum, with substantial benefit to the quality of operational forecasts. The current work shows a framework in which cloudy infrared data, with its stronger and more non-linear sensitivity, can also benefit operational-quality forecasts.