Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-4903-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-4903-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud
ECMWF, Shinfield Park, Reading RG2 9AX, UK
Stefano Migliorini
Met Office, FitzRoy Road, Exeter EX1 3PB, UK
Marco Matricardi
ECMWF, Shinfield Park, Reading RG2 9AX, UK
Related authors
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021, https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Short summary
Satellite observations of radiation from the earth can have strong sensitivity to cloud and precipitation in the atmosphere, with applications in weather forecasting and the development of models. Computing the radiation received at the satellite sensor using radiative transfer theory requires a simulation of the optical properties of a volume containing a large number of cloud and precipitation particles. This article describes the physics used to generate these
bulkoptical properties.
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021, https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Short summary
Satellite observations sensitive to cloud and precipitation help improve the quality of weather forecasts. However, they are sensitive to things that models do not forecast, such as the shapes and sizes of snow and ice particles. These details can be estimated from the observations themselves and then incorporated in the satellite simulators used in weather forecasting. This approach, known as parameter estimation, will be increasingly useful to build models of poorly known physical processes.
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021, https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Short summary
Oriented nonspherical ice particles induce polarization that is ignored when cloud-sensitive satellite observations are used in numerical weather prediction systems. We present a simple approach for approximating particle orientation, requiring minor adaption of software and no additional calculation burden. With this approach, the system realistically simulates the observed polarization patterns, increasing the physical consistency between instruments with different polarizations.
Alan J. Geer
Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019, https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary
Short summary
Using more satellite data in cloudy areas helps improve weather forecasts, but all-sky assimilation is still tricky, particularly for infrared data. To allow the use of hyperspectral infrared sounder radiances in all-sky conditions, an error model is developed that, in the presence of cloud, broadens the correlations between channels and increases error variances. After fixing problems of gravity wave and bias amplification, the results of all-sky assimilation trials were promising.
Katrin Lonitz and Alan J. Geer
Atmos. Meas. Tech., 12, 405–429, https://doi.org/10.5194/amt-12-405-2019, https://doi.org/10.5194/amt-12-405-2019, 2019
Short summary
Short summary
Permittivity models for microwave frequencies of liquid water below 0°C are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models including models based on the most recent observations.
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, https://doi.org/10.5194/gmd-11-2717-2018, 2018
Short summary
Short summary
This paper describes a fast atmospheric radiative transfer model, RTTOV, which is widely used in the satellite retrieval and weather forecast model assimilation communities. It computes top-of-atmosphere radiances for visible, infrared and microwave downward-viewing satellite radiometers. It enables the satellite data, which are a key part of the observing system, to be optimally used with forecast models. The developments made to RTTOV over the past 20 years are summarised.
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016, https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary
Short summary
Because a systematic difference between measurements of water vapor performed by space-borne observing instruments in the microwave spectral domain and their numerical modeling was recently highlighted, this work discusses and gives an overview of the various errors and uncertainties associated with each element in the comparison process. Indeed, the knowledge of absolute errors in any observation of the climate system is key, more specifically because we need to detect small changes.
A. J. Geer and F. Baordo
Atmos. Meas. Tech., 7, 1839–1860, https://doi.org/10.5194/amt-7-1839-2014, https://doi.org/10.5194/amt-7-1839-2014, 2014
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021, https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Short summary
Satellite observations of radiation from the earth can have strong sensitivity to cloud and precipitation in the atmosphere, with applications in weather forecasting and the development of models. Computing the radiation received at the satellite sensor using radiative transfer theory requires a simulation of the optical properties of a volume containing a large number of cloud and precipitation particles. This article describes the physics used to generate these
bulkoptical properties.
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021, https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Short summary
Satellite observations sensitive to cloud and precipitation help improve the quality of weather forecasts. However, they are sensitive to things that models do not forecast, such as the shapes and sizes of snow and ice particles. These details can be estimated from the observations themselves and then incorporated in the satellite simulators used in weather forecasting. This approach, known as parameter estimation, will be increasingly useful to build models of poorly known physical processes.
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021, https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Short summary
Oriented nonspherical ice particles induce polarization that is ignored when cloud-sensitive satellite observations are used in numerical weather prediction systems. We present a simple approach for approximating particle orientation, requiring minor adaption of software and no additional calculation burden. With this approach, the system realistically simulates the observed polarization patterns, increasing the physical consistency between instruments with different polarizations.
Robin J. Hogan and Marco Matricardi
Geosci. Model Dev., 13, 6501–6521, https://doi.org/10.5194/gmd-13-6501-2020, https://doi.org/10.5194/gmd-13-6501-2020, 2020
Short summary
Short summary
A key component of computer models used to predict weather and climate is the radiation scheme, which calculates how solar and infrared radiation heats and cools the atmosphere and surface, including the important role of greenhouse gases. This paper describes the experimental protocol and large datasets for a new project, CKDMIP, to evaluate and improve the accuracy of the treatment of atmospheric gases in the radiation schemes used worldwide, as well as their computational speed.
Alan J. Geer
Atmos. Meas. Tech., 12, 3629–3657, https://doi.org/10.5194/amt-12-3629-2019, https://doi.org/10.5194/amt-12-3629-2019, 2019
Short summary
Short summary
Using more satellite data in cloudy areas helps improve weather forecasts, but all-sky assimilation is still tricky, particularly for infrared data. To allow the use of hyperspectral infrared sounder radiances in all-sky conditions, an error model is developed that, in the presence of cloud, broadens the correlations between channels and increases error variances. After fixing problems of gravity wave and bias amplification, the results of all-sky assimilation trials were promising.
Katrin Lonitz and Alan J. Geer
Atmos. Meas. Tech., 12, 405–429, https://doi.org/10.5194/amt-12-405-2019, https://doi.org/10.5194/amt-12-405-2019, 2019
Short summary
Short summary
Permittivity models for microwave frequencies of liquid water below 0°C are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models including models based on the most recent observations.
Fabien Carminati, Stefano Migliorini, Bruce Ingleby, William Bell, Heather Lawrence, Stuart Newman, James Hocking, and Andrew Smith
Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, https://doi.org/10.5194/amt-12-83-2019, 2019
Short summary
Short summary
The GRUAN processor is a software developed to collocate radiosonde profiles and numerical weather prediction model fields, simulate top-of-atmosphere brightness temperature at frequencies used by space-borne instruments, and propagate the radiosonde uncertainties in that simulation. This work responds to an identified lack of metrologically traceable characterisation of uncertainties in model fields that are increasingly used for the validation and calibration of space-borne instruments.
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, https://doi.org/10.5194/gmd-11-2717-2018, 2018
Short summary
Short summary
This paper describes a fast atmospheric radiative transfer model, RTTOV, which is widely used in the satellite retrieval and weather forecast model assimilation communities. It computes top-of-atmosphere radiances for visible, infrared and microwave downward-viewing satellite radiometers. It enables the satellite data, which are a key part of the observing system, to be optimally used with forecast models. The developments made to RTTOV over the past 20 years are summarised.
Ross Noel Bannister, Stefano Migliorini, Alison Clare Rudd, and Laura Hart Baker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-260, https://doi.org/10.5194/gmd-2017-260, 2017
Revised manuscript has not been submitted
Short summary
Short summary
An ensemble of weather forecasts (i.e. multiple forecasts) contains useful information that a traditional single forecast does not have. Most existing forecast ensembles though have few members (ensemble too small), meaning that the information that they contain is noisy. This paper shows how more ensemble members can be generated from an existing (small) ensemble, and how the value added by the extra members can be assessed in a quantitative way.
Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang
Atmos. Meas. Tech., 9, 2207–2221, https://doi.org/10.5194/amt-9-2207-2016, https://doi.org/10.5194/amt-9-2207-2016, 2016
Short summary
Short summary
Because a systematic difference between measurements of water vapor performed by space-borne observing instruments in the microwave spectral domain and their numerical modeling was recently highlighted, this work discusses and gives an overview of the various errors and uncertainties associated with each element in the comparison process. Indeed, the knowledge of absolute errors in any observation of the climate system is key, more specifically because we need to detect small changes.
A. J. Geer and F. Baordo
Atmos. Meas. Tech., 7, 1839–1860, https://doi.org/10.5194/amt-7-1839-2014, https://doi.org/10.5194/amt-7-1839-2014, 2014
L. H. Baker, A. C. Rudd, S. Migliorini, and R. N. Bannister
Nonlin. Processes Geophys., 21, 19–39, https://doi.org/10.5194/npg-21-19-2014, https://doi.org/10.5194/npg-21-19-2014, 2014
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Climatology of estimated liquid water content and scaling factor for warm clouds using radar–microwave radiometer synergy
Optimizing cloud motion estimation on the edge with phase correlation and optical flow
A semi-Lagrangian method for detecting and tracking deep convective clouds in geostationary satellite observations
The CHROMA cloud-top pressure retrieval algorithm for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission
High-spatial-resolution retrieval of cloud droplet size distribution from polarized observations of the cloudbow
Evaluation of the spectral misalignment on the Earth Clouds, Aerosols and Radiation Explorer/multi-spectral imager cloud product
Retrieval of terahertz ice cloud properties from airborne measurements based on the irregularly shaped Voronoi ice scattering models
Evaluation of polarimetric ice microphysical retrievals with OLYMPEX campaign data
Latent heating profiles from GOES-16 and its impacts on precipitation forecasts
A CO2-independent cloud mask from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications
Across-track Extension of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACM-3D Product
Retrieval of ice water path from the Microwave Humidity Sounder (MWHS) aboard FengYun-3B (FY-3B) satellite polarimetric measurements based on a deep neural network
Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals
Improved spectral processing for a multi-mode pulse compression Ka–Ku-band cloud radar system
Uncertainty-bounded estimates of ash cloud properties using the ORAC algorithm: application to the 2019 Raikoke eruption
Ice water path retrievals from Meteosat-9 using quantile regression neural networks
The Virga-Sniffer – a new tool to identify precipitation evaporation using ground-based remote-sensing observations
Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation
An optimal estimation algorithm for the retrieval of fog and low cloud thermodynamic and micro-physical properties
Simulation and sensitivity analysis for cloud and precipitation measurements via spaceborne millimeter wave radar
Identifying cloud droplets beyond lidar attenuation from vertically pointing cloud radar observations using artificial neural networks
Segmentation-based multi-pixel cloud optical thickness retrieval using a convolutional neural network
Top-of-the-atmosphere reflected shortwave radiative fluxes from GOES-R
Optimizing radar scan strategies for tracking isolated deep convection using observing system simulation experiments
A kriging-based analysis of cloud liquid water content using CloudSat data
High-resolution satellite-based cloud detection for the analysis of land surface effects on boundary layer clouds
Retrievals of ice microphysical properties using dual-wavelength polarimetric radar observations during stratiform precipitation events
The surface longwave cloud radiative effect derived from space lidar observations
Cloud phase and macrophysical properties over the Southern Ocean during the MARCUS field campaign
Detection of supercooled liquid water containing clouds with ceilometers: development and evaluation of deterministic and data-driven retrievals
An all-sky camera image classification method using cloud cover features
Determination of atmospheric column condensate using active and passive remote sensing technology
Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data
Towards the use of conservative thermodynamic variables in data assimilation: a case study using ground-based microwave radiometer measurements
Empirical model of multiple-scattering effect on single-wavelength lidar data of aerosols and clouds
Analytic characterization of random errors in spectral dual-polarized cloud radar observations
Assessing synergistic radar and radiometer capability in retrieving ice cloud microphysics based on hybrid Bayesian algorithms
Applying self-supervised learning for semantic cloud segmentation of all-sky images
Coincident in situ and triple-frequency radar airborne observations in the Arctic
Analysis of improvements in MOPITT observational coverage over Canada
Using artificial neural networks to predict riming from Doppler cloud radar observations
Evaluating cloud liquid detection against Cloudnet using cloud radar Doppler spectra in a pre-trained artificial neural network
Cloud optical properties retrieval and associated uncertainties using multi-angular and multi-spectral measurements of the airborne radiometer OSIRIS
PARAFOG v2.0: a near-real-time decision tool to support nowcasting fog formation events at local scales
Inpainting radar missing data regions with deep learning
Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data
Triple-frequency radar retrieval of microphysical properties of snow
Retrieving microphysical properties of concurrent pristine ice and snow using polarimetric radar observations
Comparison of mid-latitude single- and mixed-phase cloud optical depth from co-located infrared spectrometer and backscatter lidar measurements
Yulan Hong, Stephen W. Nesbitt, Robert J. Trapp, and Larry Di Girolamo
Atmos. Meas. Tech., 16, 1391–1406, https://doi.org/10.5194/amt-16-1391-2023, https://doi.org/10.5194/amt-16-1391-2023, 2023
Short summary
Short summary
Deep convective updrafts form overshooting tops (OTs) when they extend into the upper troposphere and lower stratosphere. An OT often indicates hazardous weather conditions. The global distribution of OTs is useful for understanding global severe weather conditions. The Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua and Terra satellites provides 2 decades of records on the Earth–atmosphere system with stable orbits, which are used in this study to derive 20-year OT climatology.
Pragya Vishwakarma, Julien Delanoë, Susana Jorquera, Pauline Martinet, Frederic Burnet, Alistair Bell, and Jean-Charles Dupont
Atmos. Meas. Tech., 16, 1211–1237, https://doi.org/10.5194/amt-16-1211-2023, https://doi.org/10.5194/amt-16-1211-2023, 2023
Short summary
Short summary
Cloud observations are necessary to characterize the cloud properties at local and global scales. The observations must be translated to cloud geophysical parameters. This paper presents the estimation of liquid water content (LWC) using radar and microwave radiometer (MWR) measurements. Liquid water path from MWR scales LWC and retrieves the scaling factor (ln a). The retrievals are compared with in situ observations. A climatology of ln a is built to estimate LWC using only radar information.
Bhupendra A. Raut, Paytsar Muradyan, Rajesh Sankaran, Robert C. Jackson, Seongha Park, Sean A. Shahkarami, Dario Dematties, Yongho Kim, Joseph Swantek, Neal Conrad, Wolfgang Gerlach, Sergey Shemyakin, Pete Beckman, Nicola J. Ferrier, and Scott M. Collis
Atmos. Meas. Tech., 16, 1195–1209, https://doi.org/10.5194/amt-16-1195-2023, https://doi.org/10.5194/amt-16-1195-2023, 2023
Short summary
Short summary
We studied the stability of a blockwise phase correlation (PC) method to estimate cloud motion using a total sky imager (TSI). Shorter frame intervals and larger block sizes improve stability, while image resolution and color channels have minor effects. Raindrop contamination can be identified by the rotational motion of the TSI mirror. The correlations of cloud motion vectors (CMVs) from the PC method with wind data vary from 0.38 to 0.59. Optical flow vectors are more stable than PC vectors.
William K. Jones, Matthew W. Christensen, and Philip Stier
Atmos. Meas. Tech., 16, 1043–1059, https://doi.org/10.5194/amt-16-1043-2023, https://doi.org/10.5194/amt-16-1043-2023, 2023
Short summary
Short summary
Geostationary weather satellites have been used to detect storm clouds since their earliest applications. However, this task remains difficult as imaging satellites cannot observe the strong vertical winds that are characteristic of storm clouds. Here we introduce a new method that allows us to detect the early development of storms and continue to track them throughout their lifetime, allowing us to study how their early behaviour affects subsequent weather.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023, https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Short summary
In this work, we analyze polarized cloudbow observations by the airborne camera system specMACS to retrieve the cloud droplet size distribution defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade-wind cumulus clouds observed during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m × 100 m) that allow new insights into cloud microphysics.
Minrui Wang, Takashi Y. Nakajima, Woosub Roh, Masaki Satoh, Kentaroh Suzuki, Takuji Kubota, and Mayumi Yoshida
Atmos. Meas. Tech., 16, 603–623, https://doi.org/10.5194/amt-16-603-2023, https://doi.org/10.5194/amt-16-603-2023, 2023
Short summary
Short summary
SMILE (a spectral misalignment in which a shift in the center wavelength appears as a distortion in the spectral image) was detected during our recent work. To evaluate how it affects the cloud retrieval products, we did a simulation of EarthCARE-MSI forward radiation, evaluating the error in simulated scenes from a global cloud system-resolving model and a satellite simulator. Our results indicated that the error from SMILE was generally small and negligible for oceanic scenes.
Ming Li, Husi Letu, Hiroshi Ishimoto, Shulei Li, Lei Liu, Takashi Y. Nakajima, Dabin Ji, Huazhe Shang, and Chong Shi
Atmos. Meas. Tech., 16, 331–353, https://doi.org/10.5194/amt-16-331-2023, https://doi.org/10.5194/amt-16-331-2023, 2023
Short summary
Short summary
Influenced by the representativeness of ice crystal scattering models, the existing terahertz ice cloud remote sensing inversion algorithms still have significant uncertainties. We developed an ice cloud remote sensing retrieval algorithm of the ice water path and particle size from aircraft-based terahertz radiation measurements based on the Voronoi model. Validation revealed that the Voronoi model performs better than the sphere and hexagonal column models.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
EGUsphere, https://doi.org/10.5194/egusphere-2022-1488, https://doi.org/10.5194/egusphere-2022-1488, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State during winter 2015. Radar estimates of ice properties most agreed with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Yoonjin Lee, Christian D. Kummerow, and Milija Zupanski
Atmos. Meas. Tech., 15, 7119–7136, https://doi.org/10.5194/amt-15-7119-2022, https://doi.org/10.5194/amt-15-7119-2022, 2022
Short summary
Short summary
Vertical profiles of latent heating are derived from GOES-16 to be used in convective initialization. They are compared with other latent heating products derived from NEXRAD and GPM satellites, and the results show that their values are very similar to the radar-derived products. Finally, using latent heating derived from GOES-16 for convective initialization shows improvements in precipitation forecasts, which are comparable to the results using latent heating derived from NEXRAD.
Simon Whitburn, Lieven Clarisse, Marc Crapeau, Thomas August, Tim Hultberg, Pierre François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 6653–6668, https://doi.org/10.5194/amt-15-6653-2022, https://doi.org/10.5194/amt-15-6653-2022, 2022
Short summary
Short summary
With more than 15 years of measurements, the IASI radiance dataset is becoming a reference climate data record. Its exploitation for satellite applications requires an accurate and unbiased detection of cloud scenes. Here, we present a new cloud detection algorithm for IASI that is both sensitive and consistent over time. It is based on the use of a neural network, relying on IASI radiance information only and taking as a reference the last version of the operational IASI L2 cloud product.
Zhipeng Qu, Howard W. Barker, Jason N. S. Cole, and Mark W. Shephard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-301, https://doi.org/10.5194/amt-2022-301, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
This paper describes EarthCARE’s L2 product ACM-3D. It includes the Scene Construction Algorithm (SCA) used to produce the indexes for reconstructing 3D atmospheric scene based on satellite nadir retrievals. It also provide the information about the buffer zone sizes of 3D assessment domains and the ranking scores for selecting the best 3D assessment domains. These output variables are needed to run 3D radiative transfer models for the radiative closure assessment of EarthCARE’s L2 retrievals.
Wenyu Wang, Zhenzhan Wang, Qiurui He, and Lanjie Zhang
Atmos. Meas. Tech., 15, 6489–6506, https://doi.org/10.5194/amt-15-6489-2022, https://doi.org/10.5194/amt-15-6489-2022, 2022
Short summary
Short summary
This paper uses a neural network approach to retrieve the ice water path from FY-3B/MWHS polarimetric measurements, focusing on its unique 150 GHz quasi-polarized channels. The Level 2 product of CloudSat is used as the reference value for the neural network. The results show that the polarization information is helpful for the retrieval in scenes with thicker cloud ice, and the 150 GHz channels give a significant improvement compared to using only 183 GHz channels.
Miriam Latsch, Andreas Richter, Henk Eskes, Maarten Sneep, Ping Wang, Pepijn Veefkind, Ronny Lutz, Diego Loyola, Athina Argyrouli, Pieter Valks, Thomas Wagner, Holger Sihler, Michel van Roozendael, Nicolas Theys, Huan Yu, Richard Siddans, and John P. Burrows
Atmos. Meas. Tech., 15, 6257–6283, https://doi.org/10.5194/amt-15-6257-2022, https://doi.org/10.5194/amt-15-6257-2022, 2022
Short summary
Short summary
The article investigates different S5P TROPOMI cloud retrieval algorithms for tropospheric trace gas retrievals. The cloud products show differences primarily over snow and ice and for scenes under sun glint. Some issues regarding across-track dependence are found for the cloud fractions as well as for the cloud heights.
Han Ding, Haoran Li, and Liping Liu
Atmos. Meas. Tech., 15, 6181–6200, https://doi.org/10.5194/amt-15-6181-2022, https://doi.org/10.5194/amt-15-6181-2022, 2022
Short summary
Short summary
In this study, a framework for processing the Doppler spectra observations of a multi-mode pulse compression Ka–Ku cloud radar system is presented. We first proposed an approach to identify and remove the clutter signals in the Doppler spectrum. Then, we developed a new algorithm to remove the range sidelobe at the modes implementing the pulse compression technique. The radar observations from different modes were then merged using the shift-then-average method.
Andrew T. Prata, Roy G. Grainger, Isabelle A. Taylor, Adam C. Povey, Simon R. Proud, and Caroline A. Poulsen
Atmos. Meas. Tech., 15, 5985–6010, https://doi.org/10.5194/amt-15-5985-2022, https://doi.org/10.5194/amt-15-5985-2022, 2022
Short summary
Short summary
Satellite observations are often used to track ash clouds and estimate their height, particle sizes and mass; however, satellite-based techniques are always associated with some uncertainty. We describe advances in a satellite-based technique that is used to estimate ash cloud properties for the June 2019 Raikoke (Russia) eruption. Our results are significant because ash warning centres increasingly require uncertainty information to correctly interpret,
aggregate and utilise the data.
Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 15, 5701–5717, https://doi.org/10.5194/amt-15-5701-2022, https://doi.org/10.5194/amt-15-5701-2022, 2022
Short summary
Short summary
Geostationary satellites continuously image a given location on Earth, a feature that satellites designed to characterize atmospheric ice lack. However, the relationship between geostationary images and atmospheric ice is complex. Machine learning is used here to leverage such images to characterize atmospheric ice throughout the day in a probabilistic manner. Using structural information from the image improves the characterization, and this approach compares favourably to traditional methods.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-252, https://doi.org/10.5194/amt-2022-252, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically-pointing cloud radar reflectivity time-height fields is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in Jan–Feb 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-251, https://doi.org/10.5194/amt-2022-251, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations of water within clouds using the reflected light of the sun viewed at multiple different angles by satellites. This is a great improvement over older methods which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Alistair Bell, Pauline Martinet, Olivier Caumont, Frédéric Burnet, Julien Delanoë, Susana Jorquera, Yann Seity, and Vinciane Unger
Atmos. Meas. Tech., 15, 5415–5438, https://doi.org/10.5194/amt-15-5415-2022, https://doi.org/10.5194/amt-15-5415-2022, 2022
Short summary
Short summary
Cloud radars and microwave radiometers offer the potential to improve fog forecasts when assimilated into a high-resolution model. As this process can be complex, a retrieval of model variables is sometimes made as a first step. In this work, results from a 1D-Var algorithm for the retrieval of temperature, humidity and cloud liquid water content are presented. The algorithm is applied first to a synthetic dataset and then to a dataset of real measurements from a recent field campaign.
Leilei Kou, Zhengjian Lin, Haiyang Gao, Shujun Liao, and Piman Ding
EGUsphere, https://doi.org/10.5194/egusphere-2022-886, https://doi.org/10.5194/egusphere-2022-886, 2022
Short summary
Short summary
Forward modeling of spaceborne millimeter wave radar composed of nine sub modules is presented. We quantify the uncertainties in radar reflectivity that may be caused by the physical model parameters via a sensitivity analysis. The simulations with optimal and conventional setting are compared with CloudSat data, and the improvement of optimal simulation are evaluated and analyzed. The results are instructive to the optimization in forward modeling and microphysical parameter retrieval.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Vikas Nataraja, Sebastian Schmidt, Hong Chen, Takanobu Yamaguchi, Jan Kazil, Graham Feingold, Kevin Wolf, and Hironobu Iwabuchi
Atmos. Meas. Tech., 15, 5181–5205, https://doi.org/10.5194/amt-15-5181-2022, https://doi.org/10.5194/amt-15-5181-2022, 2022
Short summary
Short summary
A convolutional neural network (CNN) is introduced to retrieve cloud optical thickness (COT) from passive cloud imagery. The CNN, trained on large eddy simulations from the Sulu Sea, learns from spatial information at multiple scales to reduce cloud inhomogeneity effects. By considering the spatial context of a pixel, the CNN outperforms the traditional independent pixel approximation (IPA) across several cloud morphology metrics.
Rachel T. Pinker, Yingtao Ma, Wen Chen, Istvan Laszlo, Hongqing Liu, Hye-Yun Kim, and Jaime Daniels
Atmos. Meas. Tech., 15, 5077–5094, https://doi.org/10.5194/amt-15-5077-2022, https://doi.org/10.5194/amt-15-5077-2022, 2022
Short summary
Short summary
Scene-dependent narrow-to-broadband transformations are developed to facilitate the use of observations from the Advanced Baseline Imager (ABI), the primary instrument on GOES-R, to derive surface shortwave radiative fluxes. This is a first NOAA product at the high resolution of about 5 k over the contiguous United States (CONUS) region. The product is archived and can be downloaded from the NOAA Comprehensive Large Array-data Stewardship System (CLASS).
Mariko Oue, Stephen M. Saleeby, Peter J. Marinescu, Pavlos Kollias, and Susan C. van den Heever
Atmos. Meas. Tech., 15, 4931–4950, https://doi.org/10.5194/amt-15-4931-2022, https://doi.org/10.5194/amt-15-4931-2022, 2022
Short summary
Short summary
This study provides an optimization of radar observation strategies to better capture convective cell evolution in clean and polluted environments as well as a technique for the optimization. The suggested optimized radar observation strategy is to better capture updrafts at middle and upper altitudes and precipitation particle evolution of isolated deep convective clouds. This study sheds light on the challenge of designing remote sensing observation strategies in pre-field campaign periods.
Jean-Marie Lalande, Guillaume Bourmaud, Pierre Minvielle, and Jean-François Giovannelli
Atmos. Meas. Tech., 15, 4411–4429, https://doi.org/10.5194/amt-15-4411-2022, https://doi.org/10.5194/amt-15-4411-2022, 2022
Short summary
Short summary
In this paper we describe the implementation of an interpolation–prediction estimator applied to cloud properties derived from CloudSat observations. The objective is to evaluate the uncertainty associated with the estimated quantity. The model developed in this study can be valuable for satellite applications (GPS, telecommunication) as well as for cloud product comparisons. This paper is didactic and beneficial for anyone interested in kriging estimators.
Julia Fuchs, Hendrik Andersen, Jan Cermak, Eva Pauli, and Rob Roebeling
Atmos. Meas. Tech., 15, 4257–4270, https://doi.org/10.5194/amt-15-4257-2022, https://doi.org/10.5194/amt-15-4257-2022, 2022
Short summary
Short summary
Two cloud-masking approaches, a local and a regional approach, using high-resolution satellite data are developed and validated for the region of Paris to improve applicability for analyses of urban effects on low clouds. We found that cloud masks obtained from the regional approach are more appropriate for the high-resolution analysis of locally induced cloud processes. Its applicability is tested for the analysis of typical fog conditions over different surface types.
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022, https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
Short summary
We use the C-band POLDIRAD and the Ka-band MIRA-35 to perform snowfall dual-wavelength polarimetric radar measurements. We develop an ice microphysics retrieval for mass, apparent shape, and median size of the particle size distribution by comparing observations to T-matrix ice spheroid simulations while varying the mass–size relationship. We furthermore show how the polarimetric measurements from POLDIRAD help to narrow down ambiguities between ice particle shape and size.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Baike Xi, Xiquan Dong, Xiaojian Zheng, and Peng Wu
Atmos. Meas. Tech., 15, 3761–3777, https://doi.org/10.5194/amt-15-3761-2022, https://doi.org/10.5194/amt-15-3761-2022, 2022
Short summary
Short summary
This study develops an innovative method to determine the cloud phases over the Southern Ocean (SO) using the combination of radar and lidar measurements during the ship-based field campaign of MARCUS. Results from our study show that the low-level, deep, and shallow cumuli are dominant, and the mixed-phase clouds occur more than single phases over the SO. The mixed-phase cloud properties are similar to liquid-phase (ice-phase) clouds in the midlatitudes (polar) region of the SO.
Adrien Guyot, Alain Protat, Simon P. Alexander, Andrew R. Klekociuk, Peter Kuma, and Adrian McDonald
Atmos. Meas. Tech., 15, 3663–3681, https://doi.org/10.5194/amt-15-3663-2022, https://doi.org/10.5194/amt-15-3663-2022, 2022
Short summary
Short summary
Ceilometers are instruments that are widely deployed as part of operational networks. They are usually not able to detect cloud phase. Here, we propose an evaluation of various methods to detect supercooled liquid water with ceilometer observations, using an extensive dataset from Davis, Antarctica. Our results highlight the possibility for ceilometers to detect supercooled liquid water in clouds.
Xiaotong Li, Baozhu Wang, Bo Qiu, and Chao Wu
Atmos. Meas. Tech., 15, 3629–3639, https://doi.org/10.5194/amt-15-3629-2022, https://doi.org/10.5194/amt-15-3629-2022, 2022
Short summary
Short summary
The all-sky camera images can reflect the local cloud cover, which is considerable for astronomical observatory site selection. Therefore, the realization of automatic classification of the images is very important. In this paper, three cloud cover features are proposed to classify the images. The proposed method is evaluated on a large dataset, and the method achieves an accuracy of 96.58 % and F1_score of 96.24 %, which greatly improves the efficiency of automatic processing of the images.
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022, https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Short summary
It is necessary to correctly evaluate the amount of cloud water resources in an area. Currently, there is a lack of effective observation methods for atmospheric column condensate evaluation. We propose a method for atmospheric column condensate by combining millimetre cloud radar, lidar and microwave radiometers. The method can realise determination of atmospheric column condensate. The variation of cloud before precipitation is considered, and the atmospheric column is deduced and obtained.
Daniel Robbins, Caroline Poulsen, Steven Siems, and Simon Proud
Atmos. Meas. Tech., 15, 3031–3051, https://doi.org/10.5194/amt-15-3031-2022, https://doi.org/10.5194/amt-15-3031-2022, 2022
Short summary
Short summary
A neural network (NN)-based cloud mask for a geostationary satellite instrument, AHI, is developed using collocated data and is better at not classifying thick aerosols as clouds versus the Japanese Meteorological Association and the Bureau of Meteorology masks, identifying 1.13 and 1.29 times as many non-cloud pixels than each mask, respectively. The improvement during the day likely comes from including the shortest wavelength bands from AHI in the NN mask, which the other masks do not use.
Pascal Marquet, Pauline Martinet, Jean-François Mahfouf, Alina Lavinia Barbu, and Benjamin Ménétrier
Atmos. Meas. Tech., 15, 2021–2035, https://doi.org/10.5194/amt-15-2021-2022, https://doi.org/10.5194/amt-15-2021-2022, 2022
Short summary
Short summary
Two conservative thermodynamic variables (moist-air entropy potential temperature and total water content) are introduced into a one-dimensional EnVar data assimilation system to demonstrate their benefit for future operational assimilation schemes, with the use of microwave brightness temperatures from a ground-based radiometer installed during the field campaign SOFGO3D. Results show that the brightness temperatures analysed with the new variables are improved, including the liquid water.
Valery Shcherbakov, Frédéric Szczap, Alaa Alkasem, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 15, 1729–1754, https://doi.org/10.5194/amt-15-1729-2022, https://doi.org/10.5194/amt-15-1729-2022, 2022
Short summary
Short summary
We performed extensive Monte Carlo (MC) simulations of lidar signals and developed an empirical model to account for the multiple scattering in the lidar signals. The simulations have taken into consideration four types of lidar configurations (the ground based, the airborne, the CALIOP, and the ATLID) and four types of particles (coarse aerosol, water cloud, jet-stream cirrus, and cirrus).
The empirical model has very good quality of MC data fitting for all considered cases.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Yuli Liu and Gerald G. Mace
Atmos. Meas. Tech., 15, 927–944, https://doi.org/10.5194/amt-15-927-2022, https://doi.org/10.5194/amt-15-927-2022, 2022
Short summary
Short summary
We propose a suite of Bayesian algorithms for synergistic radar and radiometer retrievals to evaluate the next-generation NASA Cloud, Convection and Precipitation (CCP) observing system. The algorithms address pixel-level retrievals using active-only, passive-only, and synergistic active–passive observations. Novel techniques in developing synergistic algorithms are presented. Quantitative assessments of the CCP observing system's capability in retrieving ice cloud microphysics are provided.
Yann Fabel, Bijan Nouri, Stefan Wilbert, Niklas Blum, Rudolph Triebel, Marcel Hasenbalg, Pascal Kuhn, Luis F. Zarzalejo, and Robert Pitz-Paal
Atmos. Meas. Tech., 15, 797–809, https://doi.org/10.5194/amt-15-797-2022, https://doi.org/10.5194/amt-15-797-2022, 2022
Short summary
Short summary
This work presents a new approach to exploit unlabeled image data from ground-based sky observations to train neural networks. We show that our model can detect cloud classes within images more accurately than models trained with conventional methods using small, labeled datasets only. Novel machine learning techniques as applied in this work enable training with much larger datasets, leading to improved accuracy in cloud detection and less need for manual image labeling.
Cuong M. Nguyen, Mengistu Wolde, Alessandro Battaglia, Leonid Nichman, Natalia Bliankinshtein, Samuel Haimov, Kenny Bala, and Dirk Schuettemeyer
Atmos. Meas. Tech., 15, 775–795, https://doi.org/10.5194/amt-15-775-2022, https://doi.org/10.5194/amt-15-775-2022, 2022
Short summary
Short summary
An analysis of airborne triple-frequency radar and almost perfectly co-located coincident in situ data from an Arctic storm confirms the main findings of modeling work with radar dual-frequency ratios (DFRs) at different zones of the DFR plane associated with different ice habits. High-resolution CPI images provide accurate identification of rimed particles within the DFR plane. The relationships between the triple-frequency signals and cloud microphysical properties are also presented.
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022, https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary
Short summary
In this study, an analysis has been performed to understand the improvements in observational coverage over Canada in the new MOPITT V9 product. Temporal and spatial analysis of V9 indicates a general coverage gain of 15–20 % relative to V8, which varies regionally and seasonally; e.g., the number of successful MOPITT retrievals in V9 was doubled over Canada in winter. Also, comparison with the corresponding IASI instrument indicated generally good agreement, with about a 5–10 % positive bias.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Heike Kalesse-Los, Willi Schimmel, Edward Luke, and Patric Seifert
Atmos. Meas. Tech., 15, 279–295, https://doi.org/10.5194/amt-15-279-2022, https://doi.org/10.5194/amt-15-279-2022, 2022
Short summary
Short summary
It is important to detect the vertical distribution of cloud droplets and ice in mixed-phase clouds. Here, an artificial neural network (ANN) previously developed for Arctic clouds is applied to a mid-latitudinal cloud radar data set. The performance of this technique is contrasted to the Cloudnet target classification. For thick/multi-layer clouds, the machine learning technique is better at detecting liquid than Cloudnet, but if lidar data are available Cloudnet is at least as good as the ANN.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Jean-Marc Nicolas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-414, https://doi.org/10.5194/amt-2021-414, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The uncertainties in cloud remote sensing can propagate to the retrieved cloud properties and they need to be quantified. We present the formalism of error extraction and we apply it on the cloud properties retrieved from the measurements of the airborne radiometer OSIRIS. We show that errors related to measurement uncertainties reach 10 %. Errors related to the simplified model assuming that the clouds are plane-parallel and homogeneous lead to uncertainties exceeding 10 %.
Jean-François Ribaud, Martial Haeffelin, Jean-Charles Dupont, Marc-Antoine Drouin, Felipe Toledo, and Simone Kotthaus
Atmos. Meas. Tech., 14, 7893–7907, https://doi.org/10.5194/amt-14-7893-2021, https://doi.org/10.5194/amt-14-7893-2021, 2021
Short summary
Short summary
PARAFOG is a near-real-time decision tool that aims to retrieve pre-fog alert levels minutes to hours prior to fog onset. The second version of PARAFOG allows us to discriminate between radiation and stratus lowering fog situations. It is based upon the combination of visibility observations and automatic lidar and ceilometer measurements. The overall performance of the second version of PARAFOG over more than 300 fog cases at five different locations presents a good perfomance.
Andrew Geiss and Joseph C. Hardin
Atmos. Meas. Tech., 14, 7729–7747, https://doi.org/10.5194/amt-14-7729-2021, https://doi.org/10.5194/amt-14-7729-2021, 2021
Short summary
Short summary
Radars can suffer from missing or poor-quality data regions for several reasons: beam blockage, instrument failure, and near-ground blind zones, etc. Here, we demonstrate how deep convolutional neural networks can be used for filling in radar-missing data regions and that they can significantly outperform conventional approaches in terms of realism and accuracy.
Frank Werner, Nathaniel J. Livesey, Michael J. Schwartz, William G. Read, Michelle L. Santee, and Galina Wind
Atmos. Meas. Tech., 14, 7749–7773, https://doi.org/10.5194/amt-14-7749-2021, https://doi.org/10.5194/amt-14-7749-2021, 2021
Short summary
Short summary
In this study we present an improved cloud detection scheme for the Microwave Limb Sounder, which is based on a feedforward artificial neural network. This new algorithm is shown not only to reliably detect high and mid-level convection containing even small amounts of cloud water but also to distinguish between high-reaching and mid-level to low convection.
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech., 14, 7243–7254, https://doi.org/10.5194/amt-14-7243-2021, https://doi.org/10.5194/amt-14-7243-2021, 2021
Short summary
Short summary
A method for estimating microphysical properties of ice clouds based on radar measurements is presented. The algorithm exploits the information provided by differences in the radar response at different frequency bands in relation to changes in the snow morphology. The inversion scheme is based on a statistical relation between the radar simulations and the properties of snow calculated from in-cloud sampling.
Nicholas J. Kedzuf, J. Christine Chiu, V. Chandrasekar, Sounak Biswas, Shashank S. Joshil, Yinghui Lu, Peter Jan van Leeuwen, Christopher Westbrook, Yann Blanchard, and Sebastian O'Shea
Atmos. Meas. Tech., 14, 6885–6904, https://doi.org/10.5194/amt-14-6885-2021, https://doi.org/10.5194/amt-14-6885-2021, 2021
Short summary
Short summary
Ice clouds play a key role in our climate system due to their strong controls on precipitation and the radiation budget. However, it is difficult to characterize co-existing ice species using radar observations. We present a new method that separates the radar signals of pristine ice embedded in snow aggregates and retrieves their respective abundances and sizes for the first time. The ability to provide their quantitative microphysical properties will open up many research opportunities.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Cited articles
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for
satellite data in a numerical weather prediction system, Q. J. Roy.
Meteor. Soc., 133, 631–642, 2007. a
Aumann, H. H., Chen, X., Fishbein, E., Geer, A., Havemann, S., Huang, X., Liu,
X., Liuzzi, G., DeSouza-Machado, S., Manning, E. M., Masiello, G.,
Matricardi, M.,
Moradi, I.,
Natraj, V.,
Serio, C.,
Strow, L.,
Vidot, J.,
Wilson, R. C.,
Wu, W.,
Yang, Q., and
Yung, Y. L.: Evaluation of
Radiative Transfer Models with Clouds, J. Geophys. Res.-Atmos., 123,
6142–6157, 2018. a, b
Baran, A., Bodas-Salcedo, A., Cotton, R., and Lee, C.: Simulating the
equivalent radar reflectivity of cirrus at 94 GHz using an ensemble model
of cirrus ice crystals: a test of the Met Office global numerical weather
prediction model, Q. J. Roy. Meteor. Soc., 137, 1547–1560, 2011. a
Baran, A. J. and Labonnote, L.-C.: A self-consistent scattering model for
cirrus. I: The solar region, Q. J. Roy. Meteor. Soc., 133,
1899–1912, 2007. a
Bauer, P., Auligné, T., Bell, W., Geer, A., Guidard, V., Heillette, S.,
Kazumori, M., Kim, M.-J., Liu, E. H.-C., McNally, A. P., Macpherson, B.,
Okamoto, K., Renshaw, R., and Riishøjgaard, L.-P.: Satellite cloud and
precipitation assimilation at operational NWP centres, Q. J. Roy.
Meteor. Soc., 137, 1934–1951, 2011. a
Bengtsson, L. and Hodges, K.: On the impact of humidity observations in
numerical weather prediction, Tellus, 57A, 701–708, 2005. a
Bonavita, M., Isaksen, L., and Hólm, E.: On the use of EDA background
error variances in the ECMWF 4D-Var, Q. J. Roy. Meteor. Soc., 138,
1540–1559, https://doi.org/10.1002/qj.1899, 2012. a
Bonavita, M., Lean, P., and Holm, E.: Nonlinear effects in 4D-Var, Nonlin. Processes Geophys., 25, 713–729, https://doi.org/10.5194/npg-25-713-2018, 2018. a
Bormann, N., Geer, A., and Bauer, P.: Estimates of observation error
characteristics in clear and cloudy regions for microwave imager radiances
from NWP, Q. J. Roy. Meteor. Soc., 137, 2014–2023, 2011. a
Chambon, P. and Geer, A. J.: All-sky assimilation of Megha-Tropiques/SAPHIR
radiances in the ECMWF numerical weather prediction system, Tech. Memo.
802, ECMWF, Reading, UK, 2017. a
Chevallier, F., Bauer, P., Mahfouf, J.-F., and Morcrette, J.-J.: Variational
retrieval of cloud profile from ATOVS observations, Q. J. Roy.
Meteor. Soc., 128, 2511–2525, 2002. a
Cintineo, R. M., Otkin, J. A., Jones, T. A., Koch, S., and Stensrud, D. J.:
Assimilation of Synthetic GOES-R ABI Infrared Brightness Temperatures and
WSR-88D Radar Observations in a High-Resolution OSSE, Mon. Weather Rev.,
144, 3159–3180, 2016. a
Cotton, R., Field, P., Ulanowski, Z., Kaye, P. H., Hirst, E., Greenaway, R.,
Crawford, I., Crosier, J., and Dorsey, J.: The effective density of small ice
particles obtained from in situ aircraft observations of mid-latitude cirrus,
Q. J. Roy. Meteor. Soc., 139, 1923–1934, 2013. a
Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach, Q.
J. Roy. Meteor. Soc., 120, 1367–1387, 1994. a
Dragani, R. and McNally, A. P.: Operational assimilation of ozone-sensitive
infrared radiances at ECMWF, Q. J. Roy. Meteor. Soc., 139, 2068–2080,
2013. a
Errico, R. M., Bauer, P., and Mahfouf, J.-F.: Issues regarding the assimilation
of cloud and precipitation data, J. Atmos. Sci., 64, 3785–3798, 2007. a
Faijan, F., Lavanant, L., and Rabier, F.: Towards the use of cloud
microphysical properties to simulate IASI spectra in an operational context,
J. Geophys. Res.-Atmos., 117, D22205, https://doi.org/10.1029/2012JD017962, 2012. a
Field, P. R., Heymsfield, A. J., and Bansemer, A.: Snow Size Distribution
Parameterization for Midlatitude and Tropical Ice Clouds, J. Atmos. Sci., 64,
4346–4365, 2007. a
Geer, A. J., Ahlgrimm, M., Bechtold, P., Bonavita, M., Bormann, N., English, S.,
Fielding, M., Forbes, R., Robin Hogan, E. H., Janisková, M., Lonitz, K.,
Lopez, P., Matricardi, M., Sandu, I., and Weston, P.: Assimilating
observations sensitive to cloud and precipitation, Tech. Memo. 815, ECMWF,
Reading, UK, 2017a. a, b, c
Geer, A. J., Baordo, F., Bormann, N., English, S., Kazumori, M., Lawrence, H.,
Lean, P., Lonitz, K., and Lupu, C.: The growing impact of satellite
observations sensitive to humidity, cloud and precipitation, Q. J. Roy. Meteor. Soc., 143, 3189–3206, https://doi.org/10.1002/qj.3172, 2017b. a, b, c, d, e, f, g, h
Geer, A. J.: Significance of changes in forecast scores, Tellus A, 68, 30229,
https://doi.org/10.3402/tellusa.v68.30229, 2016. a, b
Geer, A. J. and Baordo, F.: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, https://doi.org/10.5194/amt-7-1839-2014, 2014. a, b
Geer, A. J., Bauer, P., and O'Dell, C. W.: A revised cloud overlap scheme for
fast microwave radiative transfer, J. Appl. Meteorol. Clim., 48, 2257–2270,
2009. a
Geer, A. J., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K., Zhu, Y., Liu,
E. H., Collard, A., Bell, W., Migliorini, S., Chambon, P., Fourrié, N.,
Kim, M.-J., Köpken-Watts, C., and Schraff, C.: All-sky satellite data
assimilation at operational weather forecasting centres, Q. J. Roy. Meteor. Soc., 144, 1191–1217, https://doi.org/10.1002/qj.3202, 2018. a, b, c, d
Greenwald, T. J., Pierce, R. B., Schaack, T., Otkin, J., Rogal, M., Bah, K.,
Lenzen, A., Nelson, J., Li, J., and Huang, H.-L.: Real-time simulation of the
GOES-R ABI for user readiness and product evaluation, B.
Am. Meteorol. Soc., 97, 245–261, 2016. a
Han, W. and McNally, A.: The 4D-Var assimilation of ozone-sensitive infrared
radiances measured by IASI, Q. J. Roy. Meteor. Soc., 136, 2025–2037,
2010. a
Honda, T., Miyoshi, T., Lien, G.-Y., Nishizawa, S., Yoshida, R., Adachi, S. A.,
Terasaki, K., Okamoto, K., Tomita, H., and Bessho, K.: Assimilating all-sky
Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor
(2015), Mon. Weather Rev., 146, 213–229, 2018. a
Jones, T. A., Otkin, J. A., Stensrud, D. J., and Knopfmeier, K.: Assimilation
of satellite infrared radiances and Doppler radar observations during a cool
season observing system simulation experiment, Mon. Weather Rev., 141,
3273–3299, 2013. a
Kazumori, M., Geer, A. J., and English, S. J.: Effects of all-sky assimilation
of GCOM-W/AMSR2 radiances in the ECMWF numerical weather prediction
system, Q. J. Roy. Meteor. Soc., 142, 721–737, https://doi.org/10.1002/qj.2669,
2016. a, b
Kurzrock, F., Cros, S., Ming, F. C., Otkin, J. A., Hutt, A., Linguet, L.,
Lajoie, G., and Potthast, R.: A Review of the Use of Geostationary Satellite
Observations in Regional-Scale Models for Short-term Cloud Forecasting,
Meteorol. Z., 27, 277–298, https://doi.org/10.1127/metz/2018/0904, 2018. a
Lavanant, L., Fourrié, N., Gambacorta, A., Grieco, G., Heilliette, S.,
Hilton, F., Kim, M.-J., McNally, A., Nishihata, H., Pavelin, E., Rabier, F.:
Comparison of cloud products within IASI footprints for the assimilation of
cloudy radiances, Q. J. Roy. Meteor. Soc., 137, 1988–2003, 2011. a
Lien, G.-Y., Miyoshi, T., and Kalnay, E.: Assimilation of TRMM Multisatellite
Precipitation Analysis with a Low-Resolution NCEP Global Forecast System,
Mon. Weather Rev., 144, 643–661, 2016. a
Lonitz, K. and Geer, A.: New screening of cold-air outbreak regions used in
4D-Var all-sky assimilation, EUMETSAT/ECMWF Fellowship Programme Research
Report 35, ECMWF, Reading, UK, 2015. a
Lonitz, K. and Geer, A.: Effect of assimilating microwave imager observations
in the presence of a model bias in marine stratocumulus, EUMETSAT/ECMWF
Fellowship Programme Research Report 44, ECMWF, Reading, UK, 2017. a
Lopez, P.: Direct 4D-Var assimilation of NCEP stage IV radar and gauge
precipitation data at ECMWF, Mon. Weather Rev., 139, 2098–2116, 2011. a
Lopez, P. and Moreau, E.: A convection scheme for data assimilation:
Description and initial tests, Q. J. Roy. Meteor. Soc., 131,
409–436, 2005. a
Martinet, P., Fourrié, N., Bouteloup, Y., Bazile, E., and Rabier, F.:
Toward the improvement of short-range forecasts by the analysis of cloud
variables from IASI radiances, Atmos. Sci. Let., 15, 342–347,
2014a. a
Martinet, P., Lavanant, L., Fourrié, N., Rabier, F., and Gambacorta, A.:
Evaluation of a revised IASI channel selection for cloudy retrievals with a
focus on the Mediterranean basin, Q. J. Roy.
Meteor. Soc., 140, 1563–1577, 2014b. a
Matricardi, M. and McNally, A.: The direct assimilation of principal components
of IASI spectra in the ECMWF 4D-Var, Q. J. Roy. Meteor. Soc., 140,
573–582, 2014. a
Matsui, T., Santanello, J., Shi, J., Tao, W.-K., Wu, D., Peters-Lidard, C.,
Kemp, E., Chin, M., Starr, D., Sekiguchi, M., and Aires, F.: Introducing multisensor
satellite radiance-based evaluation for regional Earth System modeling, J.
Geophys. Res.-Atmos., 119, 8450–8475, 2014. a
McMillin, L. M. and Dean, C.: Evaluation of a new operational technique for
producing clear radiances, J. Appl. Meteorol., 21, 1005–1014, 1982. a
Migliorini, S. and Candy, B.: All-sky satellite data assimilation of microwave
temperature sounding channels at the Met Office, Q. J. Roy. Meteor.
Soc., 145, 867–883, 2019. a
Migliorini, S., Geer, A., Matricardi, M., and English, S.: All-sky assimilation
of selected water vapour infrared IASI channels at ECMWF: strategy and
initial trials, 19th International TOVS Study Conference,
available at: https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/posters/9p_07_migliorini.pdf (last access: 7 September 2019),
2014. a
Migliorini, S., Lorenc, A. C., and Bell, W.: A moisture-incrementing operator
for the assimilation of humidity-and cloud-sensitive observations:
formulation and preliminary results, Q. J. Roy. Meteor. Soc., 144,
443–457, 2018. a
Minamide, M. and Zhang, F.: Adaptive Observation Error Inflation for
Assimilating All-sky Satellite Radiance, Mon. Weather Rev., 145, 1063–1081,
https://doi.org/10.1175/MWR-D-16-0257.1, 2017. a
Okamoto, K.: Assimilation of overcast cloudy infrared radiances of the
geostationary MTSAT-1R imager, Q. J. Roy. Meteor. Soc., 139, 715–730,
2013. a
Okamoto, K.: Evaluation of IR radiance simulation for all-sky assimilation of
Himawari-8/AHI in a mesoscale NWP system, Q. J. Roy. Meteor. Soc.,
143, 1517–1527, https://doi.org/10.1002/qj.3022, 2017. a, b, c
Okamoto, K., Sawada, Y., and Kunii, M.: Comparison of assimilating all-sky and
clear-sky infrared radiances from Himawari-8 in a mesoscale system, Q. J. Roy. Meteor. Soc., 145, 745–766, https://doi.org/10.1002/qj.3463, 2019. a, b
Otkin, J. A.: Assimilation of water vapor sensitive infrared brightness
temperature observations during a high impact weather event, J.
Geophys. Res.-Atmos., 117, D19203, https://doi.org/10.1029/2012JD017568, 2012. a
Otkin, J. A., Greenwald, T. J., Sieglaff, J., and Huang, H.-L.: Validation of a
large-scale simulated brightness temperature dataset using SEVIRI satellite
observations, J. Appl. Meteorol. Clim., 48, 1613–1626, 2009. a
Otkin, J. A., Lewis, W. E., Lenzen, A. J., McNoldy, B. D., and Majumdar, S. J.:
Assessing the accuracy of the cloud and water vapor fields in the Hurricane
WRF (HWRF) Model using satellite infrared brightness temperatures, Mon.
Weather Rev., 145, 2027–2046, 2017. a
Otkin, J. A., Potthast, R., and Lawless, A. S.: Nonlinear Bias Correction for
Satellite Data Assimilation Using Taylor Series Polynomials, Mon. Weather
Rev., 146, 263–285, 2018. a
Pangaud, T., Fourrié, N., Guidard, V., Dahoui, M., and Fabier, F.:
Assimilation of AIRS radiances affected by mid to low level clouds, Mon.
Weather Rev., 137, 4276–4292, https://doi.org/10.1175/2009MWR3020.1, 2009. a, b
Polkinghorne, R. and Vukicevic, T.: Data assimilation of cloud-affected
radiances in a cloud-resolving model, Mon. Weather Rev., 139, 755–773, 2011. a
Prates, C., Migliorini, S., English, S., and Pavelin, E.: Assimilation of
satellite infrared sounding measurements in the presence of heterogeneous
cloud fields, Q. J. Roy. Meteor. Soc., 140, 2062–2077, 2014. a
Prates, C., Migliorini, S., Stewart, L., and Eyre, J.: Assimilation of
transformed retrievals obtained from clear-sky IASI measurements, Q. J.
Roy. Meteor. Soc., 142, 1697–1712, 2016. a
Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on the RTTOV fast radiative transfer model (currently at version 12), Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018, 2018. a, b
Seaman, C. J., Sengupta, M., and Haar, T. H. V.: Mesoscale satellite data
assimilation: Impact of cloud-affected infrared observations on a cloud-free
initial model state, Tellus A, 62,
298–318, 2010. a
Stengel, M., Lindskog, M., Undén, P., and Gustafsson, N.: The impact of
cloud-affected IR radiances on forecast accuracy of a limited-area NWP
model, Q. J. Roy. Meteor. Soc., 139, 2081–2096, 2013. a
Tompkins, A. M. and Janisková, M.: A cloud scheme for data assimilation:
Description and initial tests, Q. J. Roy. Meteor. Soc., 130,
2495–2517, 2004. a
Trigo, I. F. and Viterbo, P.: Clear-sky window channel radiances: A comparison
between observations and the ECMWF model, J. Appl. Meteorol., 42, 1463–1479,
2003. a
Vukicevic, T., Greenwald, T., Zupanski, M., Zupanski, D., Vonder Haar, T., and
Jones, A.: Mesoscale cloud state estimation from visible and infrared
satellite radiances, Mon. Weather Rev., 132, 3066–3077, 2004. a
Vukicevic, T., Sengupta, M., Jones, A., and Haar, T. V.: Cloud-resolving
satellite data assimilation: Information content of IR window
observations and uncertainties in estimation, J. Atmos.
Sci., 63, 901–919, 2006. a
Yi, B., Yang, P., Liu, Q., Delst, P., Boukabara, S.-A., and Weng, F.:
Improvements on the ice cloud modeling capabilities of the Community
Radiative Transfer Model, J. Geophys. Res.-Atmos., 121, 13577–13590, https://doi.org/10.1002/2016JD025207, 2016. a
Zhang, F., Minamide, M., and Clothiaux, E. E.: Potential impacts of
assimilating all-sky infrared satellite radiances from GOES-R on
convection-permitting analysis and prediction of tropical cyclones, Geophys.
Res. Lett., 43, 2954–2963, 2016. a
Zhu, Y., Liu, E. H., Mahajan, R., Thomas, C., Groff, D., van Delst, P.,
Collard, A., Kleist, D., Treadon, R., and Derber, J.: All-Sky Microwave
Radiance Assimilation in the NCEP's GSI Analysis System, Mon. Weather Rev.,
144, 4709–4735, https://doi.org/10.1175/MWR-D-15-0445.1, 2016. a, b
Short summary
Satellite radiance observations have only recently become usable in conditions of cloud and precipitation for the initialization of weather forecasts. The move to
all-skyassimilation started with data from the microwave part of the spectrum, with substantial benefit to the quality of operational forecasts. The current work shows a framework in which cloudy infrared data, with its stronger and more non-linear sensitivity, can also benefit operational-quality forecasts.
Satellite radiance observations have only recently become usable in conditions of cloud and...